International Electronic Journal of Pure and Applied Mathematics

Volume 2 No. 4 2010, 219-224

ON ORDERING OF AG-GROUPOIDS

Tariq Shah¹§, Inayatur Rehman², Asif Ali³

1,2,3 Department of Mathematics
Quaid-i-Azam University
Islamabad, PAKISTAN

¹e-mail: stariqshah@gmail.com ²e-mail: s_inayat@yahoo.com ³e-mail: dr_asif_ali@hotmail.com

Abstract: Total ordering plays an important role in the theory of semigroups. In this study we extend this characteristic to AG^* -groupoids as: If S is an M-torsion free and cancellative AG^* -groupoid with left identity e with quotient group T, then S admits a total order compatible with its operation if and only if T has a total order.

AMS Subject Classification: 20M10, 20N99

Key Words: AG-groupoid, AG*-groupoid, quotient group

1. Introduction

Following Denes and Keedwell [1], a groupoid S is said to be Abel-Grassmann's groupoid (AG-groupoid) if for all $a,b,c \in S$, (ab)c = (cb)a. This structure is also known as left almost semigroup (abbreviated as LA-semigroup), a generalized form of a commutative semigroup (see [4]). It is known that in an AG-groupoid S the medial property (i.e. (ab)(cd) = (ac)(bd), for all $a,b,c,d \in S$) holds. By [4], an AG-groupoid S is said to be a weak associative AG-groupoid, denoted AG*-groupoid if it satisfies one of the equivalent conditions: (i) (ab)c = b(ca); (ii) (ab)c = b(ac), for all $a,b,c,\in S$. An AG-groupoid S is said to be a locally associative if (aa)a = a(aa) for all $a \in S$, see [6]. It is fairly easy to see that every AG*-groupoid is locally associative. In an AG-groupoid S with left identity e, if ab = cd, then ba = dc for all $a,b,c,d \in S$ (cf. [7, Theorem 2.7]).

Received: September 21, 2010

§Correspondence author

Inspiration by the usefulness of totally ordered semigroups, in this study we extend it to the AG*-groupoids with left identity e and established that: An M-torsion free and cancellative AG*-groupoid S with quotient group T, admits a total order compatible with its operation if and only if T has a total order.

The techniques we used in this paper are mainly inspired by [2].

2. Main Results

We begin initially by the following theorem which is a generalization of [2, Theorem 1.2].

Theorem 1. If S is an AG*-groupoid with left identity e and C is a left cancellative subAG*-groupoid of S, then there exists an embedding $\phi: S \to T$, where T is an Abelian monoid such that:

(1) $\phi(c)$ has an inverse $(\phi(c))^{-1}$ in T for all $c \in C$ and

(2)
$$T = \{ (\phi(c))^{-1} \phi(s) : s \in S, c \in C \}.$$

If S = C, then monoid T is an Abelian group.

Proof. Define a relation \sim on $A = C \times S$ by $(c_1, s_1) \sim (c_2, s_2)$ if and only if $c_1s_2=c_2s_1$. We claim that \sim is an equivalence relation. Indeed, the relation \sim is reflexive, as cs = cs implies (c,s) = (c,s). Clearly \sim is symmetric as $(c_1, s_1) \sim (c_2, s_2)$ implies $c_1 s_2 = c_2 s_1$, i.e. $c_2 s_1 = c_1 s_2$ and hence $(c_2, s_2) \sim$ (c_1, s_1) . Now suppose $(c_1, s_1) \sim (c_2, s_2)$ and $(c_2, s_2) \sim (c_3, s_3)$. This implies $c_1s_2 = c_2s_1$ and $c_2s_3 = c_3s_2$. Now using [6, Lemma 4], we have $c_2(c_1s_3) = c_1(c_2s_3) = c_3(c_2s_3) = c_3(c_2s_3)$ $c_1(c_3s_2) = c_3(c_1s_2) = c_3(c_2s_1) = c_2(c_3s_1)$. This implies that $c_1s_3 = c_3s_1$ and hence $(c_1, s_1) \sim (c_3, s_3)$ and therefore \sim is transitive. If $(c_1, s_1) \sim (c_2, s_2)$, then $c_1s_2 = c_2s_1$. By [7, Theorem 2.7], it implies that $s_2c_1 = s_1c$. Now $(c_3s_4)(s_2c_1) = s_1c$ $(c_3s_4)(s_1c_2)$ implies $(c_3s_2)(s_4c_1) = (c_3s_1)(s_4c_2)$ and so $(c_3s_2, s_4c_2) \sim (c_3s_1, s_4c_1)$ or $(c_3, s_4)(c_2, s_2) \sim (c_3, s_4)(c_1, s_1)$ or $(c_3, s_4)(c_1, s_1) \sim (c_3, s_4)(c_2, s_2)$. This implies \sim is left compatible. Again if $(c_1, s_1) \sim (c_2, s_2)$, then $c_1 s_2 = c_2 s_1$ and by [7, Theorem 2.7, $s_2c_1 = s_1c_2$. Now $(s_2c_1)(c_3s_4) = (s_1c_2)(c_3s_4)$, using medial law we have $(s_2c_3)(c_1s_4) = (s_1c_3)(c_2s_4)$ and so $(c_1s_4)(s_2c_3) = (c_2s_4)(s_1c_3)$. This implies, $(c_1s_4, s_1c_3) \sim (c_2s_4, s_2c_3)$ or $(c_1, s_1)(c_3, s_4) \sim (c_2, s_2)(c_3, s_4)$. Hence \sim is right compatible. Thus \sim is compatible. Now $T = C \times S / \sim = \{ [c, s] : c \in C, s \in S \}$ is the set of all equivalence classes of $C \times S$ under " \sim ". T is a commutative monoid under the binary operation "*" defined by

$$[(c_1, s_1)] * [(c_2, s_2)] = [(c_1c_2, s_2s_1)] \in T.$$

Clearly T is closed. Now we show that (T,*) is an AG-groupoid. For this consider

$$([(c_1, s_1)] * [(c_2, s_2)]) * [(c_3, s_3)] = [(c_1c_2, s_2s_1)] * [(c_3, s_3)]$$

$$= [(c_1c_2, s_2s_1)] * [(c_3, s_3)]$$

$$= [((c_1c_2) c_3, s_3 (s_2s_1))]$$

$$= [((c_3c_2) c_1, s_2 (s_3s_1))].$$

Now take

$$([c_3, s_3] * [c_2, s_2]) * [c_1, s_1] = [(c_3c_2, s_2s_3)] * [(c_1, s_1)]$$

$$= [((c_3c_2) c_1, s_1 (s_2s_3))]$$

$$= [((c_3c_2) c_1, s_2 (s_3s_1))].$$

Thus $([c_1, s_1] * [c_2, s_2]) * [c_3, s_3] = ([(c_3, s_3)] * [(c_2, s_2)]) * [(c_1, s_1)]$. Hence (T, *) is an AG-groupoid. Let $[(c_1, s_1)] \in T$, then consider

$$\begin{split} [(c_1,s_1)]*[(c,c)] &= [(c_1c,cs_1)] \\ &= \{(c_2,s_2) \in A : (c_1c,cs_1) \sim (c_2,s_2)\} \\ &= \{(c_2,s_2) \in A : (c_1c) s_2 = c_2 (cs_1)\} \\ &= \{(c_2,s_2) \in A : c (c_1s_2) = c (c_2s_1)\} \\ &= \{(c_2,s_2) \in A : c_1s_2 = c_2s_1\} \\ &= \{(c_2,s_2) \in A : (c_1,s_1) \sim (c_2,s_2)\} \\ &= [(c_1,s_1)] \,. \end{split}$$

Hence [(c,c)] is a right identity in T for all $c \in C$. Now since T is an AG-groupoid therefore by [7, Theorem 2.4] it becomes a commutative monoid. Now define $\phi : S \to T$ by $\phi(s) = [(c,cs)]$ for all $s \in S$. Let $s_1, s_2 \in S$ such that $s_1 = s_2$. It is easy to verify that ϕ is well-defined. Let $s_1, s_2 \in S$.

$$\begin{array}{lll} \phi\left(s_{1}s_{2}\right) & = & \left[\left(c,c\left(s_{1}s_{2}\right)\right)\right] \\ & = & \left[\left(\left(c_{2}c_{1}\right),\left(c_{2}c_{1}\right)\left(s_{1}s_{2}\right)\right)\right], \text{ where } c = c_{2}c_{1} \in C. \\ & = & \left[\left(\left(c_{2}c_{1}\right),\left(c_{2}s_{1}\right)\left(c_{1}s_{2}\right)\right)\right] = \left[\left(\left(c_{2}c_{1}\right),\left(c_{2}s_{1}\right)\left(c_{1}s_{2}\right)\right)\right]\left[\left(e,e\right)\right] \\ & = & \left[\left(\left(c_{2}c_{1}\right)e,e\left(\left(c_{2}s_{1}\right)\left(c_{1}s_{2}\right)\right)\right] = \left[\left(\left(c_{2}c_{1}\right)e,e\left(\left(c_{2}s_{1}\right)\left(c_{1}s_{2}\right)\right)\right)\right] \\ & = & \left[\left(\left(ec_{1}\right)c_{2}\right),\left(c_{2}s_{1}\right)\left(c_{1}s_{2}\right)\right] = \left[\left(c_{1},c_{1}s_{2}\right)\right]\left[\left(c_{2},c_{2}s_{1}\right)\right] \\ & = & \left[\left(c_{2},c_{2}s_{1}\right)\right]\left[\left(c_{1},c_{1}s_{2}\right)\right] = \left[\left(c_{1}s_{1},c_{1}\right)\right]\left[\left(c_{2}s_{2},c_{2}\right)\right] \\ & = & \phi\left(s_{1}\right)\phi\left(s_{2}\right). \end{array}$$

Consider

$$\begin{split} \operatorname{Ker} \phi &= \{s \in S : \phi(s) \text{ is the identity of } T \} \\ &= \{s \in S : \phi(s) = [(c,c)] \} \\ &= \{s \in S : [(c,cs)] = [(c,c)] \} \\ &= \{s \in S : (c,cs) \sim (c,c) \} = \{s \in S : cc = c(cs) \} \end{split}$$

222

$$= \{s \in S : cc = (cc)s\} = \{s \in S : e = s\}$$
$$= \{s \in S : s = e\} = \{e\}.$$

Hence ϕ is one-one. Thus $\phi: S \to T$ is an embedding. Now if $c \in C$, then $\phi(c) = [(c, c^2)]$ has an inverse $(\phi(c))^{-1} = [(c^2, c)] \in T$. Indeed, $\phi(c)(\phi(c))^{-1} = [c, c^2][(c^2, c)] = [(c.c^2, c.c^2)] = [(c_1, c_1)]$, where $c_1 = c.c^2 \in C$ and $[(c_1, c_1)]$ is an identity in T. Now an arbitrary element [(s, c)] in T can be written as

$$(\phi(c))^{-1} \phi(s) = [(c, cs)] [(c^2, c)] = [(cc^2, c(cs))] = [(cc^2, (cc)s)]$$

$$= [(cc^2, c^2s)] = [(c, s)] [(c^2, c^2)] = [(c, s)].$$

As T is commutative, so $(\phi(c))^{-1}\phi(s) = \phi(s)(\phi(c))^{-1} = [(c,s)]$. If S = C, then every element of T is invertible. Consider $[(c,s)][(s,c)] = [(cs,cs)] = [(c^2,c^2)] = [(c_1.c_1)]$, which is an identity in T. Hence T is an Abelian group.

By [8], a semigroup S is said to be M-torsion free if for all $x, y \in S$ there exists $1 \le m \in M \subseteq \mathbb{Z}^+$ with $x^m = y^m$, then x = y (see [8, p. 332]).

Now in the following we extend [8, p. 332] for an AG*-groupoid with left identity e.

Definition 1. Let (S, *) be an AG*-groupoid with left identity e, then S is said to be M-torsion free if for all $x, y \in S$ there exist $1 \le m \in M \subseteq \mathbb{Z}^+$ with $x^m = y^m$, then x = y.

Example 1. Take AG*-groupoid $(Q^+,*)$, with left identity 1 in which the binary operation * defined as $a*b=b.a^{-1}$. $(Q^+,*)$ is an O-torsion free, where O is the set of odd positive integers. In particular for m=3, take $x^3=y^3$ and by locally associative property we have $x^2*x=y^2*y$. Now as for all $x\in Q^+$, $x^2=1$, so 1*x=1*y. This implies x=y. Hence $(Q^+,*)$ is O-torsion free AG*-groupoid. Similarly (\mathbb{Z},\circ) is an O-torsion free, where O is the set of odd positive integers, AG^* -groupoid with left identity 0 defined as $a\circ b=b-a$.

Lemma 1. Let (S,*) be an AG^* -groupoid with left identity e. If \leq is total order on S compatible with *, then S is M-torsion free and cancellative.

Proof. Let $a, b \in S$ and say a < b (that is $a \le b$ and $a \ne b$). If a < b, this implies a * x < b * x for all $x \in S$. Since \le is compatible with respect to *, this implies S is cancellative.

Now if a < b, then $a * a < a * b \dots (1)$ and $a * b < b * b \dots (2)$. It further implies that a * a < a * b < b * b. From (1), we have (a * a) * a < (a * b) * a and from (2), we can say (a * b) * b < (b * b) * b. Now for a < b, the compatibility of * implies that (a * b) * a < (a * b) * b and hence (a * a) * a < (a * b) * b < (b * b) * b.

Continuing this process for m-times, where m is minimal in the set M, we have $a^m < ... < b^m$. This implies $a^m < b^m$ for some $m \in M$. Hence (S, *) is M-torsion free.

The following theorem establishes a relation between an AG*-groupoid and its quotient group.

Theorem 2. Let T be the quotient group of a cancellative AG^* -groupoid S with left identity e. Then T is M-torsion free if and only if for all $x, y \in S$, $x^n = y^n$ implies x = y, where $n \in M \subseteq Z^+$.

Suppose $T=C\times S/\sim$ is torsion free. This implies [(x,x)] is only element of $C\times S/\sim$ of finite order. So, $[(x,x)]^n=[(x,x)]$. Assume that $x^n=y^n$, where $n\in M\subseteq Z^+$. Then $x.x^n=x.y^n$. So by power associativity of S, we have $x^{1+n}=x.y^n$ or $x^n.x=x.y^n$. This implies $(x^n,y^n)\sim (x,x)$ or $[(x,y)]^n=[(x,x)]$ and hence it implies x=y. Now conversely suppose that for all $x,y\in S,$ $x^n=y^n$ implies x=y. Let $[x,y]\in C\times S/\sim$ such that $[(x,y)]^n=[(x,x)]$. This implies $(x^n,y^n)\sim (x,x)$ and therefore $x^n.x=x.y^n$. So by power associativity in S, $x^{n+1}=x.y^n$ or $x.x^n=x.y^n$. This implies $x^n=y^n$ and so x=y. Thus $[(x,x)]^n=[(x,x)]$ and hence $T=C\times S/\sim$ is M-torsion free.

Theorem 3. Let S be a M-torsion free cancellative AG^* -groupoid with left identity e with quotient group T. Then S admits a total order compatible with its operation if and only if T has a total order.

Proof. If T is totally ordered under \leq , then the relation \leq induces a total order on S compatible with the AG*-groupoid operation. Conversely, if S is totally ordered under \leq , then we define a relation \sim on T as follows:

each element of T is expressible in the form c's for some $c, s \in S$ and c' is inverse of c. Now for $t_1 = c'_1s_1$ and $t_2 = c'_3s_3$ in T, we define $t_1 \sim t_2$ by $c'_1s_1 \leq c'_3s_3$. Now $c'_1s_1 \leq c'_3s_3$ and by def. of AG*-groupoid, $c_1(c'_1s_1) \leq c_1(c'_3s_3) \Longrightarrow (c'_1c_1)s_1 \leq (c'_3c_1)s_3$. It follows that $s_1 \leq (c'_3c_1)s_3$ and $c_3s_1 \leq c_3((c'_3c_1)s_3)$, so by [6, Lemma 4] $c_3s_1 \leq (c'_3c_1)(c_3s_3) \Longrightarrow c_3s_1 \leq (c'_3c_3)(c_1s_3)$ or $c_3s_1 \leq e(c_1s_3)$ or $c_3s_1 \leq c_1s_3$.

Then \sim is a well defined relation of total order on T that is consistent with the group operation on T and for the restriction of the relation \leq on S, we just to verify that \sim is well defined and that it agrees with the relation \leq on S.

Thus, if $t_1 = c_1' s_1 = c_2' s_2$ and $t_2 = c_3' s_3 = c_4' s_4$, where $c_3 s_1 \le c_1 s_3$, then

$$(c_3s_1)(c_2s_4) \le (c_1s_3)(c_2s_4).$$
 (1)

Now for the values of c_2 and s_4 , we consider $c_1's_1=c_2's_2$, then by cancellativity we have $(c_1's_1)s_2'=(c_2's_2)s_2'=(s_2's_2)c_2'=ec_2'$. So, $(c_1's_1)s_2'=c_2'$ and $((c_1's_1)s_2')'=(c_2')'$ implies that $(c_1s_1')s_2=c_2$. Now for s_4 , consider $c_3's_3=c_4's_4$. Then $c_4(c_3's_3)=c_4(c_4's_4)$ and by [6, Lemma 4], we have $c_4(c_3's_3)=(c_4'c_4)s_4=s_4$. Now by repeated use of definitions of AG-groupoid, AG*-groupoid and medial law in (1), it can be easily verified that if $(c_3s_1)(c_2s_4) \leq (c_1s_3)(c_2s_4)$, then $(c_4s_2) \leq (c_2s_4)$ and hence \sim is well defined. Define $\phi: S \to T$ by $\phi(s) = c'(cs)$, where c' is inverse of $c \in S$. Then ϕ is an embedding. Indeed

$$\phi(s_1 s_2) = c'(c(s_1 s_2)) = (cc')(s_1 s_2) = e(s_1 s_2) = s_1 s_2$$
$$= [(cc')s_1][(cc')s_2] = [c'(cs_1)][c'(cs_2)] = \phi(s_1)\phi(s_2).$$

Now let $\phi(s_1) = \phi(s_2)$. This implies that $[c'(cs_1)] = [c'(cs_2)]$ or $(cc')s_1 = (cc')s_2$ and hence $s_1 = s_2$.

Hence for $s,t\in S$, we have $s\sim t$ if and only if $c\left(cs\right)\leq c\left(ct\right)$ if and only if $s\leq t$.

References

- [1] J. Denes, A.D. Keedwell, Latin squares and their applications, *Akademia Kiado*, Budapest (1974).
- [2] R. Gilmer, Commutative Semigroup Rings, The Univ. Chicago Press (1984).
- [3] P. Holgate, Groupoids satisfying a simple invertive law, *Math. Stud.*, **61** (1992), 101-106.
- [4] M.A. Kazim, M. Naseerudin, On almost semigroups, *The Aligarh Bull. Math.*, **2** (1972), 1-7.
- [5] Q. Mushtaq, M.S. Kamran, Left almost group, Proc. Pak. Acad. of Sciences, 33 (1996), 1-2.
- [6] Q. Mushtaq, M.S. Kamran, On locally associative LA-semigroups, J. Nat. Sci. Math., 19, No. 1 (1979), 57-62.
- [7] Q. Mushtaq, S.M. Yusuf, On LA-semigroups, Alig. Bull. Math., 8 (1978), 65-70.
- [8] M. Roitman, On finite generation of powers of ideals, Journal of Pure and Applied Algebra, 61 (2001), 327-340.