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Abstract: Total ordering plays an important role in the theory of semigroups. In
this study we extend this characteristic to AG∗-groupoids as: If S is an M -torsion
free and cancellative AG∗-groupoid with left identity e with quotient group T , then
S admits a total order compatible with its operation if and only if T has a total
order.
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1. Introduction

Following Denes and Keedwell [1], a groupoid S is said to be Abel-Grassmann’s
groupoid (AG-groupoid) if for all a, b, c ∈ S, (ab)c = (cb)a. This structure is also
known as left almost semigroup (abbreviated as LA-semigroup), a generalized form
of a commutative semigroup (see [4]). It is known that in an AG-groupoid S the
medial property (i.e. (ab)(cd) = (ac)(bd), for all a, b, c, d ∈ S) holds. By [4], an AG-
groupoid S is said to be a weak associative AG-groupoid, denoted AG∗-groupoid if
it satisfies one of the equivalent conditions: (i) (ab)c = b(ca); (ii) (ab)c = b(ac), for
all a, b, c,∈ S. An AG-groupoid S is said to be a locally associative if (aa)a = a(aa)
for all a ∈ S, see [6]. It is fairly easy to see that every AG∗-groupoid is locally
associative. In an AG-groupoid S with left identity e, if ab = cd, then ba = dc for
all a, b, c, d ∈ S (cf. [7, Theorem 2.7]).
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Inspiration by the usefulness of totally ordered semigroups, in this study we
extend it to the AG∗-groupoids with left identity e and established that: An M -
torsion free and cancellative AG∗-groupoid S with quotient group T , admits a total
order compatible with its operation if and only if T has a total order.

The techniques we used in this paper are mainly inspired by [2].

2. Main Results

We begin initially by the following theorem which is a generalization of [2, Theorem
1.2].

Theorem 1. If S is an AG∗-groupoid with left identity e and C is a left
cancellative subAG∗-groupoid of S, then there exists an embedding φ : S → T ,
where T is an Abelian monoid such that:

(1) φ (c) has an inverse (φ (c))−1 in T for all c ∈ C and

(2) T = {(φ (c))−1φ (s) : s ∈ S, c ∈ C}.

If S = C, then monoid T is an Abelian group.

Proof. Define a relation ∼ on A = C × S by (c1, s1) ∼ (c2, s2) if and only
if c1s2 = c2s1. We claim that ∼ is an equivalence relation. Indeed, the rela-
tion ∼ is reflexive, as cs = cs implies (c, s) = (c, s). Clearly ∼ is symmetric
as (c1, s1) ∼ (c2, s2) implies c1s2 = c2s1, i.e. c2s1 = c1s2 and hence (c2, s2) ∼
(c1, s1). Now suppose (c1, s1) ∼ (c2, s2) and (c2, s2) ∼ (c3, s3). This implies
c1s2 = c2s1 and c2s3 = c3s2. Now using [6, Lemma 4], we have c2 (c1s3) = c1 (c2s3) =
c1 (c3s2) = c3 (c1s2) = c3 (c2s1) = c2 (c3s1). This implies that c1s3 = c3s1 and
hence (c1, s1) ∼ (c3, s3) and therefore ∼ is transitive. If (c1, s1) ∼ (c2, s2), then
c1s2 = c2s1. By [7, Theorem 2.7],it implies that s2c1 = s1c. Now (c3s4) (s2c1) =
(c3s4) (s1c2) implies (c3s2) (s4c1) = (c3s1) (s4c2) and so (c3s2, s4c2) ∼ (c3s1, s4c1)
or (c3, s4) (c2, s2) ∼ (c3, s4) (c1, s1) or (c3, s4) (c1, s1) ∼ (c3, s4) (c2, s2). This im-
plies ∼ is left compatible. Again if (c1, s1) ∼ (c2, s2), then c1s2 = c2s1 and by [7,
Theorem 2.7], s2c1 = s1c2. Now (s2c1) (c3s4) = (s1c2) (c3s4), using medial law we
have (s2c3) (c1s4) = (s1c3) (c2s4) and so (c1s4) (s2c3) = (c2s4) (s1c3). This implies,
(c1s4, s1c3) ∼ (c2s4, s2c3) or (c1,s1) (c3, s4) ∼ (c2, s2) (c3, s4). Hence ∼ is right com-
patible. Thus ∼ is compatible. Now T = C × S/ ∼= {[c, s] : c ∈ C, s ∈ S} is the
set of all equivalence classes of C ×S under “∼”. T is a commutative monoid under
the binary operation “∗” defined by

[(c1, s1)] ∗ [(c2, s2)] = [(c1c2, s2s1)] ∈ T.

Clearly T is closed. Now we show that (T, ∗) is an AG-groupoid. For this consider

([(c1, s1)] ∗ [(c2, s2)]) ∗ [(c3, s3)] = [(c1c2, s2s1)] ∗ [(c3, s3)]In
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= [(c1c2, s2s1)] ∗ [(c3, s3)]

= [((c1c2) c3, s3 (s2s1))]

= [((c3c2) c1, s2 (s3s1))] .

Now take

([c3, s3] ∗ [c2, s2]) ∗ [c1, s1] = [(c3c2, s2s3)] ∗ [(c1, s1)]

= [((c3c2) c1, s1 (s2s3))]

= [((c3c2) c1, s2 (s3s1))] .

Thus ([c1, s1] ∗ [c2, s2]) ∗ [c3, s3] = ([(c3, s3)] ∗ [(c2, s2)]) ∗ [(c1, s1)]. Hence (T, ∗) is an
AG-groupoid. Let [(c1, s1)] ∈ T , then consider

[(c1, s1)] ∗ [(c, c)] = [(c1c, cs1)]

= {(c2, s2) ∈ A : (c1c, cs1) ∼ (c2, s2)}

= {(c2, s2) ∈ A : (c1c) s2 = c2 (cs1)}

= {(c2, s2) ∈ A : c (c1s2) = c (c2s1)}

= {(c2, s2) ∈ A : c1s2 = c2s1}

= {(c2, s2) ∈ A : (c1, s1) ∼ (c2, s2)}

= [(c1, s1)] .

Hence [(c, c)] is a right identity in T for all c ∈ C. Now since T is an AG-groupoid
therefore by [7, Theorem 2.4] it becomes a commutative monoid. Now define φ :
S → T by φ (s) = [(c, cs)] for all s ∈ S. Let s1, s2 ∈ S such that s1 = s2. It is easy
to verify that φ is well-defined. Let s1, s2 ∈ S.

φ (s1s2) = [(c, c (s1s2))]

= [((c2c1) , (c2c1) (s1s2))] , where c = c2c1 ∈ C.

= [((c2c1) , (c2s1) (c1s2))] = [((c2c1) , (c2s1) (c1s2))] [(e, e)]

= [((c2c1) e, e((c2s1) (c1s2)))] = [((c2c1) e, e((c2s1) (c1s2)))]

= [((ec1) c2), (c2s1) (c1s2)] = [(c1, c1s2)][(c2, c2s1)]

= [(c2, c2s1)][(c1, c1s2)] = [(c1s1, c1)] [(c2s2, c2)]

= φ (s1) φ (s2) .

Consider

Kerφ = {s ∈ S : φ (s) is the identity of T}

= {s ∈ S : φ (s) = [(c, c)]}

= {s ∈ S : [(c, cs)] = [(c, c)]}

= {s ∈ S : (c, cs) ∼ (c, c)} = {s ∈ S : cc = c(cs)}In
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= {s ∈ S : cc = (cc)s} = {s ∈ S : e = s}

= {s ∈ S : s = e} = {e}.

Hence φ is one-one. Thus φ : S → T is an embedding. Now if c ∈ C, then
φ (c) =

[(

c, c2
)]

has an inverse (φ (c))−1 =
[(

c2, c
)]

∈ T . Indeed, φ (c) (φ (c))−1 =
[

c, c2
] [(

c2, c
)]

=
[(

c.c2, c.c2
)]

= [(c1, c1)], where c1 = c.c2 ∈ C and [(c1, c1)] is an
identity in T . Now an arbitrary element [(s, c)] in T can be written as

(φ (c))−1 φ (s) = [(c, cs)]
[(

c2, c
)]

=
[(

cc2, c (cs)
)]

=
[(

cc2, (cc) s
)]

=
[(

cc2, c2s
)]

= [(c, s)]
[(

c2, c2
)]

= [(c, s)] .

As T is commutative, so (φ (c))−1 φ (s) = φ (s) (φ (c))−1 = [(c, s)]. If S = C, then
every element of T is invertible. Consider [(c, s)] [(s, c)] = [(cs, cs)] =

[(

c2, c2
)]

=
[(c1.c1)], which is an identity in T . Hence T is an Abelian group.

By [8], a semigroup S is said to be M -torsion free if for all x, y ∈ S there exists
1 ≤ m ∈ M ⊆ Z

+ with xm = ym, then x = y (see [8, p. 332]).
Now in the following we extend [8, p. 332] for an AG∗-groupoid with left identity

e.

Definition 1. Let (S, ∗) be an AG∗-groupoid with left identity e, then S is said
to be M -torsion free if for all x, y ∈ S there exist 1 ≤ m ∈ M ⊆ Z

+ with xm = ym,
then x = y.

Example 1. Take AG∗-groupoid (Q+, ∗), with left identity 1 in which the
binary operation ∗ defined as a ∗ b = b.a−1. (Q+, ∗) is an O-torsion free, where O is
the set of odd positive integers. In particular for m = 3, take x3 = y3 and by locally
associative property we have x2 ∗ x = y2 ∗ y. Now as for all x ∈ Q+, x2 = 1, so
1 ∗ x = 1 ∗ y. This implies x = y. Hence (Q+, ∗) is O-torsion free AG∗-groupoid.
Similarly (Z, ◦) is an O-torsion free, where O is the set of odd positive integers,
AG∗-groupoid with left identity 0 defined as a ◦ b = b − a.

Lemma 1. Let (S, ∗) be an AG∗-groupoid with left identity e. If ≤ is total
order on S compatible with ∗, then S is M -torsion free and cancellative.

Proof. Let a, b ∈ S and say a < b (that is a ≤ b and a 6= b). If a < b, this implies
a ∗ x < b ∗ x for all x ∈ S. Since ≤ is compatible with respect to ∗, this implies S is
cancellative.

Now if a < b, then a ∗ a < a ∗ b... (1) and a ∗ b < b ∗ b... (2). It further implies
that a ∗ a < a ∗ b < b ∗ b. From (1), we have ( a ∗ a) ∗ a < (a ∗ b) ∗ a and from (2),
we can say (a ∗ b) ∗ b < (b ∗ b) ∗ b. Now for a < b, the compatibility of ∗ implies that
(a ∗ b) ∗ a < (a ∗ b) ∗ b and hence ( a ∗ a) ∗ a < (a ∗ b) ∗ b < (b ∗ b) ∗ b.

Continuing this process for m-times, where m is minimal in the set M , we have
am < ... < bm. This implies am < bm for some m ∈ M . Hence (S, ∗) is M -torsion
free.In
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The following theorem establishes a relation between an AG∗-groupoid and its
quotient group.

Theorem 2. Let T be the quotient group of a cancellative AG∗-groupoid S
with left identity e. Then T is M -torsion free if and only if for all x, y ∈ S, xn = yn

implies x = y, where n ∈ M ⊆ Z+.

Suppose T = C × S/ ∼ is torsion free. This implies [(x, x)] is only element of
C × S/ ∼ of finite order. So, [(x, x)]n = [(x, x)]. Assume that xn = yn, where n ∈
M ⊆ Z+. Then x.xn = x.yn. So by power associativity of S, we have x1+n = x.yn

or xn.x = x.yn. This implies (xn, yn) ∼ (x, x) or [(x, y)]n = [(x, x)] and hence it
implies x = y. Now conversely suppose that for all x, y ∈ S, xn = yn implies x = y.
Let [x, y] ∈ C×S/ ∼ such that [(x, y)]n = [(x, x)]. This implies (xn, yn) ∼ (x, x) and
therefore xn.x = x.yn. So by power associativity in S, xn+1 = x.yn or x.xn = x.yn.
This implies xn = yn and so x = y. Thus [(x, x)]n = [(x, x)] and hence T = C×S/ ∼
is M -torsion free.

Theorem 3. Let S be a M -torsion free cancellative AG∗-groupoid with left
identity e with quotient group T . Then S admits a total order compatible with its
operation if and only if T has a total order.

Proof. If T is totally ordered under ≤, then the relation ≤ induces a total order
on S compatible with the AG∗-groupoid operation. Conversely, if S is totally ordered
under ≤, then we define a relation ∼ on T as follows:

each element of T is expressible in the form c
′

s for some c, s ∈ S and c
′

is inverse
of c. Now for t1 = c

′

1s1 and t2 = c
′

3s3 in T , we define t1 ∼ t2 by c
′

1s1 ≤ c
′

3s3.
Now c

′

1s1 ≤ c
′

3s3 and by def. of AG∗-groupoid, c1(c
′

1s1) ≤ c1(c
′

3s3) =⇒ (c
′

1c1)s1 ≤
(c

′

3c1)s3. It follows that s1 ≤ (c
′

3c1)s3 and c3s1 ≤ c3((c
′

3c1)s3)), so by [6, Lemma 4]
c3s1 ≤ (c

′

3c1) (c3s3) =⇒ c3s1 ≤ (c
′

3c3)(c1s3) or c3s1 ≤ e(c1s3) or c3s1 ≤ c1s3.
Then ∼ is a well defined relation of total order on T that is consistent with the

group operation on T and for the restriction of the relation ≤ on S, we just to verify
that ∼ is well defined and that it agrees with the relation ≤ on S.

Thus, if t1 = c
′

1s1 = c
′

2s2 and t2 = c
′

3s3 = c
′

4s4, where c3s1 ≤ c1s3, then

(c3s1) (c2s4) ≤ (c1s3) (c2s4) . (1)

Now for the values of c2 and s4, we consider c
′

1s1 = c
′

2s2, then by cancellativity
we have (c

′

1s1)s
′

2 = (c
′

2s2)s
′

2 = (s
′

2s2)c
′

2 = ec
′

2. So, (c
′

1s1)s
′

2 = c
′

2 and ((c
′

1s1)s
′

2)
′

=
(c

′

2)
′

implies that (c1s
′

1)s2 = c2. Now for s4, consider c
′

3s3 = c
′

4s4. Then c4(c
′

3s3) =
c4(c

′

4s4) and by [6, Lemma 4], we have c4(c
′

3s3) = (c
′

4c4)s4 = s4. Now by repeated
use of definitions of AG-groupoid, AG∗-groupoid and medial law in (1), it can be
easily verified that if (c3s1) (c2s4) ≤ (c1s3) (c2s4), then (c4s2) ≤ (c2s4) and hence ∼
is well defined. Define φ : S → T by φ (s) = c

′

(cs), where c
′

is inverse of c ∈ S.
Then φ is an embedding. Indeed
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φ (s1s2) = c
′

(c(s1s2)) = (cc
′

)(s1s2) = e(s1s2) = s1s2

= [(cc
′

)s1][(cc
′

)s2] = [c
′

(cs1)][c
′

(cs2)] = φ (s1)φ (s2) .

Now let φ (s1) = φ (s2). This implies that [c
′

(cs1)] = [c
′

(cs2)] or (cc
′

)s1 = (cc
′

)s2

and hence s1 = s2.
Hence for s, t ∈ S, we have s ∼ t if and only if c (cs) ≤ c (ct) if and only if

s ≤ t.
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