EMPIRICAL DISTRIBUTION FUNCTIONS:
THE CONVERGENCE RATE WITH RESPECT
TO PSEUDOMOMENTS

E. Gordienko, J. Ruiz de Chavez
1,2Department of Mathematics
UAM-Iztapalapa
Av. San Rafael Atlixco No. 186
Col. Vicentina, 09340, Iztapalapa, CDMX, MEXICO

Abstract: Let \(\hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^{n} \mathbb{I}_{X_k \leq x}, \ x \in \mathbb{R} \) be the empirical distribution function over a sample \(\{X_k, k \geq 1\} \) of i.i.d random variables with a common distribution function \(F \). We examine the conditions under which the expected \(p \)-th difference pseudomoments
\[
E \kappa_p(F, F_n) := E \left[p \int_{-\infty}^{\infty} |x|^{p-1} |F(x) - \hat{F}_n(x)| dx \right]
\]
are of order \(\frac{1}{\sqrt{n}} \) as \(n \to \infty \).

AMS Subject Classification: 60K25, 90B22
Key Words: empirical distribution, pseudomoments, rate of convergence, M\(|GI|\)\(^{\infty}\) queue

1. Motivation

Given \(p \geq 1 \), the \(p - th \) difference pseudomoment
\[
\kappa_p(F_X, F_Y) := p \int_{-\infty}^{\infty} |x|^{p-1} |F_X(x) - F_Y(x)| dx
\]
is finite for any pair of random variables \(X, Y \in L_p = L_p(\Omega, \mathcal{F}, P) \). In (1), \(F_X \) and \(F_Y \) stand for the corresponding distribution functions.

It is well-known (see e.g [4]) that \(\kappa_p \) defines a metric on the space of distribution functions of random variables from \(L_p \), and that this metric is widely used in limits theorems and inequalities expressing the quantitative continuity of mathematical models (see, for instance [3], [2], and [4]).

Received: December 2, 2018
Revised: December 17, 2018
Published: December 18, 2018

Correspondence author
To deal with the problems of continuity (stability) of the model, often one needs to approximate an unknown distribution function F by its empirical counter-part, for instance, by the empirical distribution function:

$$
\hat{F}_n(x) := \frac{1}{n} \sum_{k=1}^{n} \mathbb{I}_{\{X_k \leq x\}}, \quad x \in \mathbb{R}.
$$

Here X_1, X_2, \ldots are i.i.d copies ("observations") of random variable X with the distribution function F. In this respect, one would require to estimate the vanishing rate of $E\kappa_p(F, \hat{F}_n)$ as $n \to \infty$.

For $p = 1$, κ_1 in (1) is a well-known representation of the Kantorovich metric. In the preprint [1] it is proven that for integrable random variables $E\kappa_1(F, \hat{F}_n) \to 0$ as $n \to \infty$, and that the finiteness of the integral $\int_{-\infty}^{\infty} \sqrt{F(x)(1-F(x))} \, dx$ is the necessary and sufficient condition for $E\kappa_1(F, \hat{F}_n) = O\left(\frac{1}{\sqrt{n}}\right)$.

It seems an open problem to show for $p > 1$ that $\int_{-\infty}^{\infty} |x|^p dF(x) < \infty$ implies $E\kappa_p(F, \hat{F}_n) \to 0$ as $n \to \infty$.

The focus of the present note is to show that $E\kappa_p(F, \hat{F}_n)$ cannot converge to zero faster than $\frac{\text{const}}{\sqrt{n}}$, and to give the conditions sufficient for

$$E\kappa_p(F, \hat{F}_n) = O\left(\frac{1}{\sqrt{n}}\right) \text{ as } n \to \infty.
$$

2. The results

Let $X \in L_p$ be a random variable with the distribution function F. Then, as it is easy to verify,

$$I_{p,F} := p \int_{-\infty}^{\infty} |x|^{p-1}|F(x)(1-F(x))| \, dx < \infty.
$$

Proposition 1.

$$E\kappa_p(F, \hat{F}_n) \geq \frac{1}{\sqrt{n}} \frac{1}{\sqrt{2}} I_{p,F}, \quad n = 1, 2, \ldots \tag{4}$$

Proof. In view of (1),
EMPIRICAL DISTRIBUTION FUNCTIONS...

\[E \kappa_p \left(F; \hat{F}_n \right) = E \int_{-\infty}^{\infty} p|x|^{p-1}|F(x) - \hat{F}_n(x)| \, dx. \]

Applying the Fubini theorem to the right-hand side of this equality, we obtain:

\[E \kappa_p \left(F; \hat{F}_n \right) = \int_{-\infty}^{\infty} p|x|^{p-1} E \left(|F(x) - \hat{F}_n(x)| \right) \, dx. \] (5)

Then, using Lemma 3.4 in [1] and the arguments given in the proof of Theorem 3.1 in [1], we can show that

\[E|F(x) - \hat{F}_n(x)| \geq \frac{1}{\sqrt{2n}} F(x) (1 - F(x)). \] (6)

The combination of (3), (5) and (6) provides inequality (4).

Proposition 2.

(a) \[E \kappa_p \left(F; \hat{F}_n \right) \leq \frac{1}{\sqrt{n}} J_{p,F}, \quad n = 1, 2, \ldots \] (8)

(b) If for some \(\alpha > 0 \),

\[H := E|X|^{2p+\alpha} < \infty, \quad \text{then} \]

\[E \kappa_p \left(F; \hat{F}_n \right) \leq \frac{1}{\sqrt{n}} \left[1 + \frac{4H^{\frac{1}{2p}}}{\alpha} \right], \quad n = 1, 2, \ldots \] (9)

Proof. (a) To prove (8) we use the arguments similar to those given in the proof of Theorem 3.2 in [1]. By (5),

\[E \kappa_p \left(F; \hat{F}_n \right) \leq \int_{-\infty}^{\infty} p|x|^{p-1} \left(E \left[F(x) - \hat{F}_n(x) \right]^2 \right)^{\frac{1}{2}} \, dx. \] (10)

In view of (2),

\[E \left[F(x) - \hat{F}_n(x) \right]^2 = \frac{1}{n} V ar \left(I_{\{X_1 \leq x\}} \right) = \frac{1}{n} F(x) \left(1 - F(x) \right). \] (11)

Now (7), (10) and (11) yield inequality (8).
(b) Rewriting (7) as follows

\[j_{p,F} = \int_{-1}^{1} p|x|^{p-1} [F(x)(1 - F(x))]^{\frac{2}{p}} dx + \int_{1}^{\infty} p|x|^{p-1} [F(x)(1 - F(x))]^{\frac{2}{p}} dx \]

\[+ \int_{-\infty}^{-1} p|x|^{p-1} [F(x)(1 - F(x))]^{\frac{2}{p}} dx =: j_1 + j_2 + j_3 \tag{12} \]

and observing that \(F(1 - F) \leq \frac{1}{4} \), we find that in (12),

\[j_1 \leq 1. \tag{13} \]

For \(x \geq 1 \) by the Markov inequality,

\[F(x)(1 - F(x)) \leq 1 - F(x) \leq \frac{H}{x^{2p+\alpha}}. \]

Hence in (12)

\[j_2 \leq pH^{\frac{1}{2}} \int_{1}^{\infty} x^{p-1} \frac{1}{x^p x^{\frac{\alpha}{2}}} dx = \frac{2pH^{\frac{1}{2}}}{\alpha}. \tag{14} \]

For \(x \leq -1 \), we have:

\[F(x)(1 - F(x)) \leq F(x) \leq P(|X| \geq |x|) \leq \frac{H}{|x|^{2p+\alpha}}, \]

and similarly to (14), in (12)

\[j_3 \leq \frac{2pH^{\frac{1}{2}}}{\alpha}. \tag{15} \]

Finally, joining (8), (10), (12), (14) and (15) gives inequality (9).

For non negative random variables with light-tailed distributions inequality (9) can be improved as follows.

Corollary 3. Let for some \(\lambda > 0 \), \(M := E e^{\lambda x} < \infty \), and \(X \geq 0 \). Then,

\[E\kappa_1(F,F_n) \leq \frac{1}{\sqrt{n}} \frac{2pM^\frac{p}{2}}{\lambda^p} \Gamma(p), \quad n = 1, 2, \ldots \tag{16} \]
Indeed,
\[
\int_0^\infty px^{p-1}P(X > x)^{1/2}dx \leq pM^{1/2} \int_0^\infty x^{p-1}e^{-\lambda x}dx = pM^{1/2} \Gamma(p).
\]

The following example shows that the condition \(X \in \mathbb{L}_2p \) does not guarantee the finiteness of \(J_{p,F} \) in (7) and (8).

Example 4. Let, for instance, \(p = 2 \), and
\[
F(x) = \begin{cases}
1 - \frac{e}{x^4 \log^2(x)}, & x \geq 2, \\
0, & x < 2.
\end{cases}
\]

Then \(X \in \mathbb{L}_4 \), but \(J_{2,F} = \infty \). Indeed, choosing \(x_0 > 2 \) such that \(F(x_0) \geq \frac{1}{2} \) we get that
\[
J_{2,F} \geq \frac{2}{\sqrt{2}} \int_{x_0}^\infty x \frac{\sqrt{e}}{x^2 \log(x)}dx = \infty.
\]

Example 5. Consider two \(M|GI|1|\infty \) queues: \(Q \) named “the original one”, and \(\tilde{Q} \) interpreted as an approximation to \(Q \). We assume that both queues \(Q \) and \(\tilde{Q} \) have the same Poisson input flows, and the service times in \(Q \) have an unknown distribution function \(F \). Moreover, given \(n \geq 1 \) we admit that the distribution of services times in the queue \(\tilde{Q} \) is given by the empirical distribution function \(\hat{F}_n \).

Let \(W \) and \(\tilde{W}_n \) stand for the stationary waiting times in the queues \(Q \) and \(\tilde{Q} \), respectively. Also, let \(d_{TV} \) denote the total variation distance between distributions of random variables.

Under certain conditions, Theorem 1 in [3] provides the following inequality, that could be understood as “the stability inequality”:

\[
d_{TV}(W, \tilde{W}_n) \leq c \cdot \max \left\{ \frac{1}{2} \kappa_1(F, \hat{F}_n), \frac{1}{6} \kappa_3(F, \hat{F}_n) \right\}.
\]

(17)

If we assume that for some \(\alpha > 0 \), \(\int_0^\infty x^{6+\alpha}dF(x) < \infty \), then we obtain by (9), (17) that \(Ed_{TV}(W, \tilde{W}_n) \) is not greater than a constant times \(\frac{1}{\sqrt{n}} \).

Particularly, this allows to evaluate (in terms of the values of \(n \)) the accuracy of the approximation of the distribution of \(W \) by means of the distribution of \(\tilde{W}_n \).
References

