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Abstract: The goal of this paper is to provide a self contained detailed and rigorous
mathematical introduction to some aspects of the quantum error-correcting codes
and especially quantum stabilizer codes without venturing much, if at all, into the
world of physics. While most of the results presented are not new, it is not easy to
extract a precise mathematical formulation of results and to provide their rigorous
proofs by reading the vast number of papers in the field, quite a few of which are
written by computer scientists or physicists. It is this formulation and proofs - quite
a few of of them new - that we present here. The connections between (a) quantum
stabilizer codes and classical self-orthogonal codes and (b) between error correction
and error detection have been established in details. Techniques from algebra of
finite fields as well as representations of finite abelian groups have been employed
here.
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1. Introduction

In recent years there has been an explosion of interest in the theory of error-
correcting quantum coding theory. Probably the most important class of quantum
codes are quantum stabilizer codes - it is frequently said that they are to quantum
coding what linear codes are to general codes. General binary quantum stabilizer
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182 A. Elezi

codes were introduced by Calderbank et. al. (see [3]) and Gottesman (see [7]).
In a later paper, Calderbank et. al. connected stabilizer codes to classical self-
orthogonal codes (see [4]). Many new good quantum codes have been constructed
using this connection. In [5], [6] we use self-orthogonal Goppa codes from Algebraic
Geometry to construct certain stabilizer codes from algebraic curves with automor-
phisms. The construction of nonbinary quantum stabilizer codes was completed by
Ashikhmin and Knill (see [1]).

2. Classic and Quantum Codes

In classical binary coding theory, messages are encoded for error correction as a string
of 0s and 1s. They are the only two states of the classical units of information; we call
them bits. The string is then transmitted through a noisy communications channel
such as a telephone line, radio/satellite communications link, etc. The noise could
be lightning, human error, equipment failures etc. The encoding involves sufficient
redundancies so that the receiver may detect error occurring during transmission.

Definition 1. A binary linear code of dimension k and length n is a k-
dimensional F2-linear subspace C of Fn

2 .

The quantity k/n is called the rate of the code C.

Various inner products may be considered in Fn
2 , the standard one being the Eu-

clidean product:

a · b = a1b1 + ...+ akbk.

A linear code C is called self-orthogonal relative to an inner product iff C ⊂ C⊥ and
self-dual iff C = C⊥.

In binary quantum coding, the unit of information - called a qubit - exists as a
superposition of the two classical states. More precisely, a qubit is a linear combi-
nation

ψ := α0+ β1

where α and β are complex numbers satisfying

|α|2 + |β|2 = 1.

It is said that the state space of a single qubit is the Hilbert space C2, with the

computational basis 0 :=

[

1
0

]

, 1 =

[

0
1

]

and the standard Hermitian inner

product.In
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QUANTUM ERROR CORRECTION AND STABILIZER CODES 183

Remark 2. One of the principles of quantum computing is that the global
phase is not noticeable physically. In down-to-earth terms this means that the
qubits ψ and eiθψ will be considered identical for any real number θ.

The Hilbert space C2⊗n
is the natural state space for the composite/string of n

qubits. It is called the quantum register of n-qubits. Pure tensors in the quantum
register are called separate states, the rest are called entangled states. The basis
{0,1} of qubits yields a computational basis in the quantum register; this basis is
indexed by binary n-tuples a := a1a2...an via a1a2...an 7→ a1 ⊗ a2 ⊗ ...⊗ an.

Definition 3. A binary quantum code of length n and size K is a linear
subspace Q of a quantum register C2⊗n

of dimension K over C.

One may think of Q as a a system of log2K qubits, for example the quantum
register C2⊗n

is a quantum code of size 2n and length n = log2 2
n. The rate of Q is

given by (log2K)/n.

3. Quantum Error Group

A quantum circuit is a sequence of quantum gates. Each gate may be identified with
a unitary transformation. As a single qubit passes through a noisy quantum circuit,
a quantum error may occur, thus forcing a change in the qubit. We will think of
these quantum errors as linear transformation, i.e. 2x2 matrices. A basis of such
transformations consist of the following unitary Pauli matrices:

I, σx :=

[

0 1
1 0

]

, σy :=

[

0 −1
1 0

]

, σz :=

[

1 0
0 −1

]

.

This choice of σy differs by a factor of i from what one usually sees in the
literature. This is a matter of convenience; after all σy and iσy yield the same linear
action due to the the global phase principle.

It is easy to see that σ2x = σ2z = I and σxσz = −σzσx = σy. It follows that
E1 = {±I,±σx,±σy,±σz} is a group, called the error group for single qubits. Notice
that the matrix σx corresponds to the classical bit error 0 ↔ 1 while the matrix σz
corresponds to the phase error 0 ↔ 0, 1 ↔ −1.

Similarly, the set of tensors

En := {e1 ⊗ e2 ⊗ ...⊗ en : (∀i = 1, 2, ..., n)(ei ∈ E1)}

forms a group under the component-by-component multiplication, it is called the
error group of a composite system of n qubits. These are the errors that occurIn
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184 A. Elezi

during a quantum transmission of n qubits. Notice that with the exception of ±I
all matrices in En are traceless.

Since σxσz = σy = −σzσx, every element of En may be written uniquely as

±σa1x σ
b1
z ⊗ ...⊗ σanx σbnz = ±σx(a)σy(b),

where σx(a) = σa1x ⊗ ...⊗ σanx and σz(b) = σb1z ⊗ ...⊗ σbnz for

a = (a1, ..., an), b = (b1, ..., bn) ∈ Fn
2 .

Let Ψn : En → F2n
2 given by Ψn(±σx(a)σy(b)) = (a,b). It is a surjective

homomorphism with ker (Ψn) = {±I}. It follows that En has 2 · 2n · 2n = 22n+1

elements.

Proposition 4. Elements of En either commute or anti-commute. In fact, for
E = ±Xσ(a)Zσ(b), E

′ = ±Xσ(a
′)Zσ(b

′) ∈ En

E′E = (−1)ab
′−a′bEE′,

where xy = x1y1 + ...+ xnyn is the standard Euclidean product for x,y ∈ Fn
2 .

In what follows, elements of F2n
2 will be represented by pairs (x,y) where x,y ∈

Fn
2 .

Definition 5. Define the symplectic inner product in F2n
2 by 〈(a,b), (a′,b′)〉 :=

ab′ − a′b.

Let G be a subgroup of En such that −I ∈ G. Notice that for such a group
±σx(a)σy(b) are simultaneously in or out of G. Then

CG := Ψn(G) = {(a,b) : σx(a)σy(b) ∈ G}

is a binary linear code of length 2n with |G|/2 elements. Hence dim CG = log2 |G|−1.
Furthermore, G is abelian iff CG is self-orthogonal via the symplectic inner product
in F2n

2 . Conversely, if C is a self-orthogonal linear code of length 2n then

GC := Ψn
−1(C) = {±σx(a)σz(b) : (a,b) ∈ C}

is an abelian subgroup of En and −I ∈ GC . We obtain the following

Proposition 6. The correspondences G → CG , C → GC yield a bijective
map from the set of self-orthogonal linear codes of length 2n to the set of abelian
subgroups G ⊂ En such that −I ∈ G.In
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QUANTUM ERROR CORRECTION AND STABILIZER CODES 185

Both F2n
2 and En come with notions of weight which are compatible under the

map Ψn.

Definition 7. (a) The weight of an element (a,b) ∈ F2n
2 is defined as wt(a,b) :=

#{i : (ai, bi) 6= (0, 0)}.
(b) The weight of an element E = e1 ⊗ e2 ⊗ ...⊗ en ∈ En is defined as wt(E) :=

#{i : ei 6= I}.

It is immediate that the function Ψn preserves the weight, i.e. wt(a,b) =
wt(±σx(a)σz(b)).

4. Error Detecting and Correcting

Let Q be a quantum code of length n and size K, E an error, and P : C⊗2n → Q

the orthogonal projection operator.

Definition 8. It is said that the quantum code Q detects the error E iff
(∀x, y ∈ Q, ) (x ⊥ y ⇒ x ⊥ E(y)).

Theorem 9. Q detects the error E iff there is a constant CE such that PEP =
CEP as matrices.

Proof. Assume that Q detects E. Let e1, e2, ..., eK be an orthonormal basis of
Q. Then E(ei) ⊥ ej for i 6= j. It follows that

E(ei) = λiei + ai,

where λi is some scalar and ai ∈ Q⊥. One can easily see that ei − ej ⊥ ei + ej for
all i, j. It follows that

λiei + ai − λjej − aj = E(ei − ej) ⊥ ei + ej .

But both ai, aj ∈ Q⊥, which implies that λiei − λjej ⊥ ei + ej . Now 0 = (λiei −
λjej)(ei + ej) = λi − λj . Then λ1 = λ2 = ... = λK = λ and E(ei) = λei + ai for all
i. Hence E(x) = λx+ xE for some xE ∈ Q⊥. Now

PEP (x) = P (λP (x) + P (x)E) = λP 2(x) = λP (x).

Here we used P 2 = P and P (P (x)E) = 0 since P (x)E ∈ Q⊥.
Assume now that PEP = cEP . Let x ⊥ y be two elements of Q. Then P (y) = y

and PE(y) = PEP (y) = cEP (y) = cEy. It follows that E(y) = cEy + yE with
yE ∈ Q⊥. One can easily see that x ⊥ E(y).In
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186 A. Elezi

Recall that for ann × n matrix with complex entries E we denote by E† its
adjoint, i.e. its conjugate transpose matrix. If 〈u, v〉 :=

∑

u∗i vi is the standard inner
product on Cn, then

〈E†(u), v〉 = 〈u,E(v)〉.

Definition 10. A measurement on a quantum register is described by a set O
of outcomes, a collection {Po : o ∈ O} of linear operators on the quantum register,
which are called measurement operators and satisfy the completeness equation

∑

o∈O

P †
oP0 = I

The probability of outcome o for a state α is p(o) = 〈Po(α), Po(α)〉. Notice
that from the completeness equation

∑

o∈O p(o) = 1. The state of α after the
measurement is

Po(α)
√

p(o)
.

Definition 11. A quantum algorithm on a quantum register is a finite compo-
sition of unitary and measurement operators.

Let Q be a binary quantum code of length n and size K, P : C⊗2n → Q the
orthogonal projection operator, and E a collection of 2n × 2n matrix, not just from
the error group ǫn.

Definition 12. It is said that Q corrects E iff for every E ∈ E and every x ∈ Q

there exists a quantum algorithm µ(E,x) such that µ(E,x)(Ex) = x.

There is a characterization of the errors that are corrected by the codes Q

which also unveils an interesting connection between the notions of detecting and
correcting. Our treatment follows that of Knill and LaFlamme [8], for an alternative
treatment see Bennett et. al. [2].

Theorem 13. (see [8], [2]) If the dimension of Q is at least three then the
following are equivalent:

1. The code Q corrects E .

2. The code Q detects E†E′ for all E,E′ ∈ E .

3. If x, y are two orthogonal elements of Q then Ex,E′y are also orthogonal for
any E,E′ ∈ E .In
te
rn

a
ti
o
n
a
l
E
le
ct
ro

n
ic

J
o
u
rn

a
l
o
f
P
u
re

a
n
d

A
p
p
li
e
d

M
a
th

e
m
a
ti
cs

–
IE

J
P
A
M

,
V
o
lu
m
e
9
,
N
o
.
3
(2
0
1
5
)



QUANTUM ERROR CORRECTION AND STABILIZER CODES 187

4. There exists an orthonormal basis {vi} of Q and a scalar λ(E,E′) for every
E,E′ ∈ E such that

〈E(vi), E
′(vj)〉 = λ(E,E′)δi,j .

5. For every E,E′ ∈ E , there exists a scalar µ(E,E′) such that

PE†E′P = µ(E,E′)P.

Proof. Will demonstrate only (5) ⇔ (2) ⇔ (3) ⇒ (4) ⇔ (3).
(2) ⇔ (3) follows from the definition of detectable and the property of adjoint
matrix.
(2) ⇔ (5) follows from the previous theorem.
(3) ⇒ (4). Let x ⊥ y be two norm one elements of Q. Then x − y and x + y are
also perpendicular, hence

E(x) ⊥ E′(y), E′(x) ⊥ E(y), E(x− y) ⊥ E′(x+ y).

It follows that 〈E(x), E′(x)〉 = 〈E(y), E′(y)〉. From the connectedness of being
orthogonal, 〈E(x), E′(x)〉 is constant on the unit sphere in Q.
(4) ⇒ (3). This follows easily from 〈E(x), E′(y)〉 = λ(E,E′)〈x, y〉.

5. Quantum Stabilizer Codes

Let G be an abelian subgroup of En. It is a 2-subgroup; denote its order by 2k+1.
A linear character on G is a group homomorphism µ : G → S1. If −I ∈ G then
χ(−I) = ±1 and exactly 2k of them satisfy χ(−I) = −1. Consider one of these
linear characters.

Definition 14. The stabilizer code determined by χ is given by

QG,χ := {x ∈ C2⊗n
: E(x) = χ(E)x for all E ∈ G}.

Remark 15. −I commutes will every matrix. If −I /∈ G, then the extension
G′ of G by −I will still be an abelian subgroup and χ may be extended to a linear
character χ′ : G′ → S1 via χ(−I) = −1. Furthermore

QG′,χ′ = QG,χ.

Therefore, from now on we will assume that

G is an abelian subgroup of En, − I ∈ G, χ : G → S1, χ(−I) = −1.In
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188 A. Elezi

Let

Pχ :=
1

|G|

∑

E∈G

χ(E)E

and E′ ∈ G. We compute

E′Pχ :=
1

|G|

∑

E∈G

χ(E)E′E

=
1

|G|

∑

E∈G

χ(E′)χ(E′E)E′E =
1

|G|

∑

A∈G

χ(E′)χ(A)A = χ(E′)Pχ.

Proposition 16. Let CG be the self orthogonal linear code that correspond to
G and Pχ be the projection Pχ : C2⊗n

→ QG,χ. Then the stabilizer code QG,χ is the
+1 eigenspace of the operator Pχ and dim QG,χ = 2n−dim CG .

Proof. Assume first that Pχ(x) = x. For E ∈ G, we obtain: E(x) = EPχ(x) =
χ(E)Pχ(x) = χ(E)x, hence x ∈ QG,χ.

Now assume that x ∈ QG,χ. We compute

Pχ(x) =
1

|G|

∑

E∈G

χ(E)E(x) =
1

|G|

∑

E∈G

χ(E)χ(E)x =
1

|G|

∑

E∈G

x = x.

Assume that |G| = 2k+1 hence k = dim CG . We have dim QG,χ = trace (Pχ).
We notice that only I and −I have nonzero trace. Hence

dim QG,χ = trace (Pχ) =
1

|G|

∑

E∈G

χ(E) trace (E)

=
1

|G|
(χ(I) trace (I) + χ(−I) trace (−I)) =

1

2k+1
(2n + 2n) = 2n−k.

As explained in the second section, the abelian subgroup G corresponds to a
linear code C = CG which is of length 2n and self-orthogonal C ⊂ C⊥. The following
statement is immediate:

Proposition 17. GC⊥ is the centralizer Z(G) of G.

It is a basic fact from linear algebra that the self-orthogonal linear code C can
be extended to a self-dual linear code C∗ of dimension n. The maximal abelian
subgroup GC∗ has order 2n+1 and G = GC ⊂ GC∗ .In
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QUANTUM ERROR CORRECTION AND STABILIZER CODES 189

Proposition 18. The only errors that are not detectable by QG,χ are E ∈
Z(G)− G.

Proof. Assume first that E ∈ G. Let x ⊥ y with x, y ∈ QG,χ. Then E(y) =
χ(E)y ⊥ x. Hence QG,χ detects E.

Now assume that E /∈ Z(G). Since elements of En either commute or anticom-
mute, there is a matrix E′ ∈ G such that E′E = −EE′. Matrices of G that commute
with E form a normal subgroup G0 of index 2. The nontrivial coset G1 := G − G0

consist of matrices of G that anticommute with E. For P = Pχ we compute

|G|PEP =
∑

A∈G

χ(A)AEP = E





∑

A∈G0

χ(A)AP −
∑

A∈G1

χ(A)AP





= E





∑

A∈G0

χ(A)χ(A)P −
∑

A∈G1

χ(A)χ(A)P



 = 0.

So, PEP = 0 = 0P hence, E is detectable.
Finally, assume that E ∈ Z(G) − G. We first notice that since E commutes

with all the matrices of G then E fixes the subspace QG,χ, i.e. if x ∈ QG,χ then
E(x) ∈ QG,χ. Now if E is detectable by QG,χ then PEP = CEP for some scalar
CE . SInce it fixes QG,χ, E must act as the scalar matrix CE on QG,χ, i.e. QG,χ

must be a CE-eigenspace for E. Let us show that this is not possible. First, we
extend G by E to obtain an abelian group GE of order 2k+2. We then extend the
linear character χ to χE on GE via χE(E) = cE . This new linear character defines
a subspace QGE ,χE

⊂ QG,χ of dimension is 2n−k−1 which is half of the dimension of
QG,χ. It follows that QG,χ can not be an eigenspace of E.

Recall that GC⊥ = Z(G). Let d be the the minimum weight of the codewords in
C⊥−C (or the minimum weight in Z(G)−G). Every error of weight d− 1 or less is
detectable, hence the minimum distance of QG,χ is d. From Proposition 6 and the
construction of quantum stabilizer codes we obtain:

Theorem 19. Let C ⊂ F2n
2 be a (n − k)-dimensional subspace such that

C ⊂ C⊥ (i.e. C is self-orthogonal). Then, there exists a quantum code Q ⊂ C2⊗n

of dimension 2k and minimum distance d = min{wt(x)|x ∈ C⊥ − C}.
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