ON THE SUBORBITS OF THE ALTERNATING GROUP A_n
ACTING ON ORDERED r–ELEMENT SUBSETS

Richard Gachimu1, Ireri Kamuti2, Lewis Nyaga3, Jane Rimberia4

1Department of Pure and Applied Mathematics
Jomo Kenyatta University of Agriculture and Technology
P.O. Box 62000-00200, Nairobi, KENYA
2, 4Department of Mathematics
Kenyatta University
P.O. Box 43844-00100, Nairobi, KENYA

Abstract: Transitivity and primitivity of the action of the alternating group A_n on ordered r–element subsets of the set $X = \{1, 2, \ldots, n\}$ of n letters are investigated in this paper. In addition, the rank and subdegrees of the action are calculated. Finally, some properties of the suborbits corresponding to this action are explored.

AMS Subject Classification: 05E18
Key Words: group, action, suborbits, rank, subdegrees

1. Introduction

Calculation of ranks and subdegrees of the symmetric group S_n acting on $X^{[r]}$, the ordered r–element subsets of X, appears in [4] and [5]. However, little appears to have been done on the action of A_n, a subgroup of S_n, on $X^{[r]}$. Section 2 of this paper gives definitions of some terms as well as theorems to be used in subsequent sections. Section 3 investigates the transitivity and primitivity of A_n acting on $X^{[r]}$. On the other hand, Section 4 determines the rank and subdegrees of A_n on $X^{[2]}$, $X^{[3]}$ and $X^{[4]}$ while Section 5 generalizes these invariants. Finally, Section 6 explores some criteria for determining if a suborbit of A_n is self-paired or paired with another. This section also derives a formula for finding the number of self-paired suborbits.

Received: January 14, 2015 c © 2015 Academic Publications, Ltd.

8Correspondence author
2. Notation and Preliminary Results

Let G be a group and X a non-empty set. Then G acts on the left of X if there exists a function $G \times X \to X$ such that $(g_1 g_2)x = g_1(g_2)x$ and $ex = x$ where e is the identity in G, $x \in X$ and $g_1, g_2 \in G$. The action of G on the right of X can be defined in a similar way. In this case, X is called a $G-$set.

Suppose a group G acts on a set X. Define a relation $x \sim y$ on X if and only if there exists $g \in G$ such that $y = gx$. This defines an equivalence relation on X. The equivalence class containing x is $\text{Orb}_G x = \{gx | g \in G\}$, and is called the orbit (transitivity class) of x. Since any set is a disjoint union of equivalence classes under an equivalence relation, it follows that if G acts on X, then X is a union of disjoint orbits.

Theorem 2.1. (Cauchy-Frobenius Lemma, [2], p. 223) If G is a finite group and X is a finite $G-$set, then the number of orbits in X under G is $\sum_{g \in G} |\text{Fix}(g)|$, where $\text{Fix}(g) = \{x \in X | gx = x\}$.

The action of a group G on a set X is said to be transitive if for each x and y in X, there exists $g \in G$ such that $y = gx$; in other words $\text{Orb}_G x = X$ if $x \in X$. A group which is not transitive is called intransitive.

The stabilizer in G of x is the subset $\text{Stab}_G x = \{g \in G | gx = x\}$ of G. It is also denoted by G_x and it is a subgroup of G, called the isotropy subgroup of G. If G_x is trivial, i.e., $G_x = \{e\}$, then G is said to act faithfully on X.

Theorem 2.2. (Orbit-Stabilizer Theorem, [2], p. 218) Let X be a $G-$set and let $x \in X$. Then $|\text{Orb}_G x| = \frac{|G|}{|\text{Stab}_G x|}$, the index of G_x in G.

Let G act transitively on a finite set X. Then a subset Y of X is called a block (set of imprimitivity) for the action if for each $g \in G$, either $gY = Y$ or $gY \cap Y = \emptyset$; i.e., if gY and Y do not overlap partially. In particular, \emptyset, X and all 1-element subsets of X are blocks, called the trivial blocks. The action is said to be primitive if the only blocks are the trivial blocks; otherwise the action is imprimitive.

Suppose G acts transitively on X and let G_x be the stabilizer of $x \in X$. The orbits $\Delta_0 = \{x\}, \Delta_1, \Delta_2, \ldots, \Delta_{r-1}$ of G_x on X are known as suborbits of G. The rank of G is then r. The sizes $n_i = |\Delta_i|$, $(i = 0, 1, 2, \ldots, r - 1)$ are known as the subdegrees of G. Both the rank and the subdegrees of G are independent of the choice of $x \in X$.

Let G act transitively on a set X and let Δ be an orbit of G_x on X. Define $\Delta^* = \{gx | g \in G, x \in g\Delta\}$. Then Δ^* is also an orbit of G_x called the G_x-orbit.
ON THE SUBORBITS OF THE ALTERNATING GROUP A_n...

(G–subbit) paired with \triangle. Clearly, $\triangle^{**} = \triangle$ and $|\triangle| = |\triangle^*|$. If $\triangle = \triangle^*$, then \triangle is said to be self-paired. The trivial suborbit of G is self-paired, and there are other self-paired suborbits of G if and only if G has even order, [6].

Theorem 2.3. (see [1], p. 425) Let G be transitive on X and let $g \in G$. Then the number of self-paired suborbits of G is given by $\frac{1}{|G|} \sum_{g \in G} |\Fix(g^2)|$.

From this point on, G shall be reserved to denote the alternating group A_n. Let G act on $X = \{1, 2, \ldots, n\}$. Then, the action of G on X induces an action of G on X^r that is defined by

$$g[x_1, x_2, \ldots, x_r] = [g(x_1), g(x_2), \ldots, g(x_r)] \ \forall g \in G, \ [x_1, x_2, \ldots, x_r] \in X^r.$$

3.Transitivity and Primitivity of G Acting on X^r

Theorem 3.1. The action G on X^r is intransitive if $n = r + 1$.

Proof. If $n = r + 1$, then $|X^r| = n!$ and $|G| = \frac{n!}{2} < |X^r|$. Hence, if G acts on X^r and $[x_1, x_2, \ldots, x_r] \in X^r$, then $|\Orb_G[x_1, x_2, \ldots, x_r]| < |X^r|$, and the conclusion follows.

Lemma 3.2. Let G act on X^r with $n \geq r + 2$. If $[x_1, x_2, \ldots, x_r] \in X^r$, then $|\Stab_G[x_1, x_2, \ldots, x_r]| = \frac{(n-r)!}{2}$. In this case $\Stab_G[x_1, x_2, \ldots, x_r]$ is trivial if $n = r + 2$, so that G acts faithfully on X^r, and is non-trivial otherwise.

Proof. Suppose G acts on X^r and let $[x_1, x_2, \ldots, x_r] \in X^r$. Then $g \in G$ fixes $[x_1, x_2, \ldots, x_r]$ if and only if each element of $\{x_1, x_2, \ldots, x_r\}$ comes from a 1-cycle in g. Hence, the order of $\Stab_G[x_1, x_2, \ldots, x_r]$ is equal to the order of the group of all even permutations of the set $\{x_1, x_2, \ldots, x_n\}$. But, this group is isomorphic to A_{n-r}. Therefore, $|\Stab_G[x_1, x_2, \ldots, x_r]| = \frac{(n-r)!}{2}$. Now, if $n = r + 2$, then on rewriting $n-r = 2$, so that $|\Stab_G[x_1, x_2, \ldots, x_r]| = \frac{n!}{2} = 1$. Hence, G acts faithfully on X^r. A similar argument shows that if $n > r + 2$, then $|\Stab_G[x_1, x_2, \ldots, x_r]| > 1$.

Theorem 3.3. The action of G on X^r is transitive if $n \geq r + 2$.

Proof. Let $[x_1, x_2, \ldots, x_r] \in X^r$. Now, from Theorem 2.2 and Lemma 3.2,

$$|\Orb_G[x_1, x_2, \ldots, x_r]| = \frac{|G|}{|\Stab_G[x_1, x_2, \ldots, x_r]|}$$
Therefore, the action is transitive.

\[n = \frac{n!}{(n-r)!} = \frac{n!}{(n-r)!} = |X^r|. \]

By Theorem 3.3, this action is transitive. Now, suppose

\[Y = \{ [x_1, x_2, \ldots, x_r], [y_1, y_2, \ldots, y_r] \} \subset X^r. \]

Let \(x_1 = y_1 = x', x_2 = y_2 = x'', \ldots, x_{r-2} = y_{r-2} = x^{r-2} \) while \(x_{r-1}, x_r, y_{r-1}, \) and \(y_r \) are all distinct so that \(|\{ x_1, x_2, \ldots, x_r \} \cap \{ y_1, y_2, \ldots, y_r \}| = r - 2 \). Take \(g \in G \). If each of \(x_i \) and \(y_j \) \((i, j = 1, 2, \ldots, r) \) comes from a 1-cycle of \(g \), then \(g \) fixes each element of \(Y \) so that \(gY = Y \). On the other hand, if each of \(x', x'', \ldots, x^{r-2} \) is in a 1-cycle of \(g \), while \((x_{r-1}, y_{r-1}) \) and \((x_r, y_r) \) are transpositions in \(g \), then \(gY = Y \) since \(g[x_1, x_2, \ldots, x_r] = [y_1, y_2, \ldots, y_r] \) and \(g[y_1, y_2, \ldots, y_r] = [x_1, x_2, \ldots, x_r] \). Finally, any other \(g \) takes one element of \(Y \) to an element of \(X^r \) not in \(Y \) so that \(gY \cap Y = \emptyset \).

Hence, \(Y \) is a non-trivial block for the action and the action is therefore imprimitive.

Theorem 3.4. The action of \(G \) on \(X^r \) is imprimitive if \(n \geq r + 2 \).

Proof. By Theorem 3.3, this action is transitive. Now, suppose

\[Y = \{ [x_1, x_2, \ldots, x_r], [y_1, y_2, \ldots, y_r] \} \subset X^r. \]

Let \(x_1 = y_1 = x', x_2 = y_2 = x'', \ldots, x_{r-2} = y_{r-2} = x^{r-2} \) while \(x_{r-1}, x_r, y_{r-1}, \) and \(y_r \) are all distinct so that \(|\{ x_1, x_2, \ldots, x_r \} \cap \{ y_1, y_2, \ldots, y_r \}| = r - 2 \). Take \(g \in G \). If each of \(x_i \) and \(y_j \) \((i, j = 1, 2, \ldots, r) \) comes from a 1-cycle of \(g \), then \(g \) fixes each element of \(Y \) so that \(gY = Y \). On the other hand, if each of \(x', x'', \ldots, x^{r-2} \) is in a 1-cycle of \(g \), while \((x_{r-1}, y_{r-1}) \) and \((x_r, y_r) \) are transpositions in \(g \), then \(gY = Y \) since \(g[x_1, x_2, \ldots, x_r] = [y_1, y_2, \ldots, y_r] \) and \(g[y_1, y_2, \ldots, y_r] = [x_1, x_2, \ldots, x_r] \). Finally, any other \(g \) takes one element of \(Y \) to an element of \(X^r \) not in \(Y \) so that \(gY \cap Y = \emptyset \).

Hence, \(Y \) is a non-trivial block for the action and the action is therefore imprimitive.

4. Ranks and Subdegrees of \(G \) on \(X^2 \), \(X^3 \) and \(X^4 \)

Theorem 4.1. If \(n \geq 6 \), then the rank of \(G \) on \(X^2 \) is 7.

Proof. Let \(G \) act on \(X^2 \). Then \(G_{[1,2]} \) has orbits with exactly 2, 1, or no element from \(N = \{ 1, 2 \} \). There is only \(2C_2 = 1 \) way of selecting two elements from \(N \) and the two can be arranged in the two positions in \(2P_2 = 2 \) ways. So, there are \(2C_2 \times 2P_2 = 2 \) suborbits whose elements contain both elements of \(N \). Also, there are \(2C_1 = 2 \) ways of selecting an element from \(N \), which can occupy any of the two positions in \(2P_1 = 2 \) ways. Hence, there are \(2C_1 \times 2P_1 = 4 \) suborbits of \(G \) whose each element has exactly one element from \(N \). Similarly, there is only \(2C_0 \times 2P_0 = 1 \) suborbit whose each element contains no element from \(N \). So, \(G \) has 7 suborbits in total.

The seven suborbits of \(G \) on \(X^2 \) are

a) Suborbits whose elements contain both 1 and 2:
ON THE SUBORBITS OF THE ALTERNATING GROUP A_n...

<table>
<thead>
<tr>
<th>No. of elements from ${1, 2}$</th>
<th>Suborbit Length</th>
<th>Corresponding No. of Suborbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>$2C_2 \times 2P_2 = 2$</td>
</tr>
<tr>
<td>1</td>
<td>$(n - 2)$</td>
<td>$2C_1 \times 2P_1 = 4$</td>
</tr>
<tr>
<td>0</td>
<td>$(n - 2)(n - 3)$</td>
<td>$2C_0 \times 2P_0 = 1$</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

Table 1: Rank and Subdegrees of G on $X^{[2]}$ for $n \geq 6$

$\triangle_0 = Orb_{G_{[1, 2]}}[1, 2] = \{[1, 2]\}$

$\triangle_1 = Orb_{G_{[1, 2]}}[2, 1] = \{[2, 1]\}$

b) Suborbits whose each element contains exactly one of 1 and 2:

$\triangle_2 = Orb_{G_{[1, 2]}}[1, 3] = \{[1, 3], [1, 4], [1, 5], \ldots, [1, n]\}$

$\triangle_3 = Orb_{G_{[1, 2]}}[3, 1] = \{[3, 1], [4, 1], [5, 1], \ldots, [n, 1]\}$

$\triangle_4 = Orb_{G_{[1, 2]}}[2, 3] = \{[2, 3], [2, 4], [2, 5], \ldots, [2, n]\}$

$\triangle_5 = Orb_{G_{[1, 2]}}[3, 2] = \{[3, 2], [4, 2], [5, 2], \ldots, [n, 2]\}$

c) Suborbit whose each element contains neither 1 nor 2:

$\triangle_6 = Orb_{G_{[1, 2]}}[3, 4] = \{[3, 4], [3, 5], \ldots, [3, n], [4, 3], \ldots, [4, n], \ldots, [n, n - 1]\}$.

The subdegrees and corresponding number of suborbits of G on $X^{[2]}$ for $n \geq 6$ are summarized in Table 1 below.

Theorem 4.2. If $n \geq 8$, then the rank of G on $X^{[3]}$ is 34.

Proof. Suppose G acts on $X^{[3]}$. Then $G_{[1, 2, 3]}$ has orbits with exactly 3, 2, 1, or no element from $N = \{1, 2, 3\}$. An argument similar to the one in the proof of Theorem 4.1 shows that there are $3C_3 \times 3P_3 = 6$ suborbits of G with exactly three elements from N and $3C_2 \times 3P_2 = 18$ suborbits with exactly 2 elements from N. Also, there are $3C_1 \times 3P_1 = 9$ suborbits with exactly 1 element from N and $3C_0 \times 3P_0 = 1$ suborbit with no element from N. Therefore, the rank of G on $X^{[3]}$ is 34.

The subdegrees and corresponding number of suborbits of G on $X^{[3]}$ for $n \geq 8$ are summarized in Table 2 below.

Theorem 4.3. If $n \geq 10$, then the rank of G on $X^{[4]}$ is 209.

Proof. It is analogous to the proofs of Theorems 4.1 and 4.2 above.

The subdegrees and corresponding number of suborbits of G on $X^{[4]}$ for $n \geq 10$ are summarized in Table 3 below.
Suppose G acts on $X^{[r]}$ with $n \geq 2(r + 1)$. Suppose \triangle_i is a suborbit of G whose each element has exactly $r - i$ elements from $\{1, 2, \ldots, r\}$ for $0 \leq i \leq r$. Then, adding an extra element to X increases $|\triangle_i|$ by

$$i(n - r)(n - r - 1)(n - r - 2) \ldots (n - r - i + 3)(n - r - i + 2)$$

units, but does not affect the rank of G.

Proof. From the second column of Table 4,

$$|\triangle_i| = (n - r)(n - r - 1)(n - r - 2) \ldots (n - r - i + 2)(n - r - i + 1).$$

If an extra element is added to X, the new value of $|\triangle_i|$ is obtained by replacing n with $n + 1$, which equals $(n - r + 1)(n - r)(n - r - 1) \ldots (n - r - i + 3)(n - r - i + 2)$.

Table 2: Rank and Subdegrees of G on $X^{[3]}$ for $n \geq 8$

<table>
<thead>
<tr>
<th>No. of elements from ${1, 2, 3}$</th>
<th>Suborbit Length</th>
<th>Corresponding No. of Suborbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>$3C_3 \times 3P_3 = 6$</td>
</tr>
<tr>
<td>2</td>
<td>$(n - 3)$</td>
<td>$3C_2 \times 3P_2 = 18$</td>
</tr>
<tr>
<td>1</td>
<td>$(n - 3)(n - 4)$</td>
<td>$3C_1 \times 3P_1 = 9$</td>
</tr>
<tr>
<td>0</td>
<td>$(n - 3)(n - 4)(n - 5)$</td>
<td>$3C_0 \times 3P_0 = 1$</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>

Table 3: Rank and Subdegrees of G on $X^{[4]}$ for $n \geq 10$

<table>
<thead>
<tr>
<th>No. of elements from ${1, 2, 3, 4}$</th>
<th>Suborbit Length</th>
<th>Corresponding No. of Suborbits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1</td>
<td>$4C_4 \times 4P_4 = 24$</td>
</tr>
<tr>
<td>3</td>
<td>$(n - 4)$</td>
<td>$4C_3 \times 4P_3 = 96$</td>
</tr>
<tr>
<td>2</td>
<td>$(n - 4)(n - 5)$</td>
<td>$4C_2 \times 4P_2 = 72$</td>
</tr>
<tr>
<td>1</td>
<td>$(n - 4)(n - 5)(n - 6)$</td>
<td>$4C_1 \times 4P_1 = 16$</td>
</tr>
<tr>
<td>0</td>
<td>$(n - 4)(n - 5)(n - 6)(n - 7)$</td>
<td>$4C_0 \times 4P_0 = 1$</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>209</td>
</tr>
</tbody>
</table>

5. Rank and Subdegrees of G Acting on $X^{[r]}$

Suppose G acts on $X^{[r]}$ and let $N = \{1, 2, \ldots, r\}$. If $n \geq 2(r + 1)$, then it is clear from Section 4 that G has suborbits whose each element contains exactly $r, (r - 1), (r - 2), (r - 3), \ldots, (r - i), \ldots, 3, 2, 1$, or no element from N where $0 \leq i \leq r$. The subdegrees and corresponding number of suborbits of this action are obtained by generalizing the results in, respectively, the second and third columns of Tables 1, 2 and 3. This is done as in Table 4 below.

Lemma 5.1. Let G act on $X^{[r]}$ with $n \geq 2(r + 1)$. Suppose \triangle_i is a suborbit of G whose each element has exactly $r - i$ elements from $\{1, 2, \ldots, r\}$ for $0 \leq i \leq r$. Then, adding an extra element to X increases $|\triangle_i|$ by

$$i(n - r)(n - r - 1)(n - r - 2) \ldots (n - r - i + 3)(n - r - i + 2)$$

units, but does not affect the rank of G.

Proof. From the second column of Table 4,

$$|\triangle_i| = (n - r)(n - r - 1)(n - r - 2) \ldots (n - r - i + 2)(n - r - i + 1).$$

If an extra element is added to X, the new value of $|\triangle_i|$ is obtained by replacing n with $n + 1$, which equals $(n - r + 1)(n - r)(n - r - 1) \ldots (n - r - i + 3)(n - r - i + 2)$.
So, the number of units by which the suborbit length changes is
\[
(n - r + 1)(n - r)(n - r - 1)(n - r - 2) \cdots (n - r - i + 3)(n - r - i + 2) - (n - r)(n - r - 1)(n - r - 2) \cdots (n - r - i + 2)(n - r - i + 1) = i(n - r)(n - r - 1) \cdots (n - r - i + 3)(n - r - i + 2).
\]

Now, the number of suborbits \(\triangle_i \) \((i = 0, 1, \ldots , r)\), which is the corresponding entry in the third column of Table 4, is given purely in terms of the integers \(r \) and \(i \). It is clear that these integers are unaffected by increasing \(|X|\). This in turn implies that increasing \(|X|\) does not change the number of suborbits \(\triangle_i \) \((i = 0, 1, \ldots , r)\). As a result, the rank of \(G \), which is just the sum of entries in this column, is not affected by adding an extra element to \(X \). \(\Box \)

Theorem 5.2. The rank of \(G \) acting on \(X^{[r]} \) is \((r!)^2 \sum_{i=0}^{r} \frac{1}{(i)!^2 (r-i)!} \) for all \(n \geq 2(r + 1) \).

Proof. The proof is by mathematical induction. If \(n = 2(r + 1) \), the sum of the entries in the third column of Table 4 gives the desired result, i.e.,
\[
R(G) = \sum_{i=0}^{r} (rC_{r-i} \times rP_{r-i})
\]
Thus, the result holds for \(n = 2(r + 1) \). Now, suppose the result holds for \(n = 2(r + 1) + k, k \in \mathbb{Z}^+ \). To show that it holds for \(n = 2(r + 1) + (k + 1) \), add an extra element to the set \{1, 2, \ldots, 2r, 2r + 1, 2(r + 1), \ldots, 2(r + 1) + k\}. From Lemma 5.1, the extra element just changes the lengths of the orbits of \(G_{[1,2,\ldots,r]} \) with exactly \(r, (r - 1), (r - 2), (r - 3), (r - 4), \ldots, 3, 2, 1 \), and no element from \(N = \{1, 2, \ldots, r\} \), respectively, by

\[
0, 1, 2(n-r), 3(n-r)(n-r-1), 4(n-r)(n-r-1)(n-r-2),
\]

\[
\vdots
\]

\[
(r-3)(n-r)(n-r-1)(n-r-2) \ldots (n-2r+6)(n-2r+5),
\]

\[
(r-2)(n-r)(n-r-1)(n-r-2) \ldots (n-2r+5)(n-2r+4),
\]

\[
(r-1)(n-r)(n-r-1)(n-r-2) \ldots (n-2r+4)(n-2r+3),
\]

and

\[
r(n-r)(n-r-1)(n-r-2) \ldots (n-2r+3)(n-2r+2)
\]

units. However, by the same lemma, the number of suborbits of \(G \) remain unchanged. So, if \(n = 2(r + 1) + (k + 1) \), then the rank of \(G \) on \(X^r \) is the same as that when \(n = 2(r + 1) + k \). Thus, it holds for \(n = 2(r + 1) + (k + 1) \) whenever it holds for \(n = 2(r + 1) + k \). Therefore, by the principle of mathematical induction, it holds for all \(n \geq 2(r + 1) \).

\[
\square
\]

6. Properties of Suborbits of \(G \) Acting on \(X^r \)

Theorem 6.1. Let \(G \) act on \(X^r \) and let \(\triangle_i \) and \(\triangle_j \) be orbits of \(G_{[1,2,\ldots,r]} \). Suppose \([x_1,x_2,\ldots,x_r] \in \triangle_i \) where \(x_k \in \{1, 2, \ldots, n\} \forall k = 1, 2, \ldots, r \). Then \(\triangle_i \) is paired with \(\triangle_j \) if and only if there is an element \([y_1,y_2,\ldots,y_r] \in \triangle_j \) with \(y_t \in \{1, 2, \ldots, n\} \forall t = 1, 2, \ldots, r \) such that the permutations

\[
\sigma_i = \begin{pmatrix} 1 & 2 & \cdots & r \\ y_1 & y_2 & \cdots & y_r \end{pmatrix} \text{ and } \sigma_j = \begin{pmatrix} 1 & 2 & \cdots & r \\ x_1 & x_2 & \cdots & x_r \end{pmatrix}
\]

are inverses of each other.

Proof. Suppose \(\triangle_i \) is paired with \(\triangle_j \) and \([x_1,x_2,\ldots,x_r] \in \triangle_i \). Then there exists \([y_1,y_2,\ldots,y_r] \in \triangle_j \) and \(g_i, g_j \in G \) such that

\[
g_i[x_1,x_2,\ldots,x_r] = [1,2,\ldots,r]; \ g_i[1,2,\ldots,r] = [y_1,y_2,\ldots,y_r]
\]

and

\[
g_j[y_1,y_2,\ldots,y_r] = [1,2,\ldots,r]; \ g_j[1,2,\ldots,r] = [x_1,x_2,\ldots,x_r].
\]
By definition,
\[g_i(x_1) = 1, g_i(x_2) = 2, \ldots, g_i(x_r) = r; \quad g_j(1) = y_1, g_j(2) = y_2, \ldots, g_j(r) = y_r \]
and
\[g_j(y_1) = 1, g_j(y_2) = 2, \ldots, g_j(y_r) = r; \quad g_j(1) = x_1, g_j(2) = x_2, \ldots, g_j(r) = x_r. \]
This implies that
\[(g_i g_j)(1) = 1, (g_i g_j)(2) = 2, \ldots, (g_i g_j)(r) = r \]
and
\[(g_j g_i)(1) = 1, (g_j g_i)(2) = 2, \ldots, (g_j g_i)(r) = r, \]
so that the permutations \(\sigma_i \) and \(\sigma_j \) are inverses of each other. Conversely, suppose \(\sigma_i \) and \(\sigma_j \) are inverses of each other. If \(g_i, g_j \in G \) such that
\[g_i = \begin{pmatrix} 1 & 2 & \ldots & r & \ldots & n \\ y_1 & y_2 & \ldots & y_r & \ldots & y_n \end{pmatrix} \quad \text{and} \quad g_j = \begin{pmatrix} 1 & 2 & \ldots & r & \ldots & n \\ x_1 & x_2 & \ldots & x_r & \ldots & x_n \end{pmatrix}, \]
then \(g_i \) takes \([x_1, x_2, \ldots, x_r] \) to \([1, 2, \ldots, r] \) and \([1, 2, \ldots, r] \) to \([y_1, y_2, \ldots, y_r] \). Similarly, \(g_j \) takes \([y_1, y_2, \ldots, y_r] \) to \([1, 2, \ldots, r] \) and \([1, 2, \ldots, r] \) to \([x_1, x_2, \ldots, x_r] \). Hence \(\Delta_i \) and \(\Delta_j \) are paired.

Theorem 6.2. Let \(\Delta \) be an orbit of \(G_{[1, 2, \ldots, r]} \) on \(X^r \) and let
\[[x_1, x_2, \ldots, x_r], [y_1, y_2, \ldots, y_r] \in \Delta. \]
Then \(\Delta \) is self-paired if and only if the permutations
\[\sigma_i = \begin{pmatrix} 1 & 2 & \ldots & r \\ y_1 & y_2 & \ldots & y_r \end{pmatrix} \quad \text{and} \quad \sigma_j = \begin{pmatrix} 1 & 2 & \ldots & r \\ x_1 & x_2 & \ldots & x_r \end{pmatrix} \]
are inverses of each other. In this case, if \([x_1, x_2, \ldots, x_r] = [y_1, y_2, \ldots, y_r] \), then \(\sigma_i = \sigma_j = \sigma \) and
\[\sigma = \begin{pmatrix} 1 & 2 & \ldots & r \\ x_1 & x_2 & \ldots & x_r \end{pmatrix} \]
is self-inverse.

Proof. Suppose \(\Delta \) is self-paired. Then, there exists \(g_i, g_j \in G \) such that
\[g_i[x_1, x_2, \ldots, x_r] = [1, 2, \ldots, r]; \quad g_i[1, 2, \ldots, r] = [y_1, y_2, \ldots, y_r] \]
and
\[g_j[y_1, y_2, \ldots, y_r] = [1, 2, \ldots, r]; \quad g_j[1, 2, \ldots, r] = [x_1, x_2, \ldots, x_r]. \]
By definition,
\[g_i(x_1) = 1, g_i(x_2) = 2, \ldots, g_i(x_r) = r; \quad g_i(1) = y_1, g_i(2) = y_2, \ldots, g_i(r) = y_r \]
and
\[g_j(y_1) = 1, g_j(y_2) = 2, \ldots, g_j(y_r) = r; \quad g_j(1) = x_1, g_j(2) = x_2, \ldots, g_j(r) = x_r. \]
This argument implies that
\[(g, g_j)(1) = 1, (g, g_j)(2) = 2, \ldots, (g, g_j)(r) = r\]
and
\[(g, g_i)(1) = 1, (g, g_i)(2) = 2, \ldots, (g, g_i)(r) = r,\]
so that the permutations \(\sigma_i\) and \(\sigma_j\) are inverses of each other. Conversely, suppose \(\sigma_i\) and \(\sigma_j\) are inverses of each other. If \(g_i, g_j \in G\) such that
\[g_i = \begin{pmatrix} 1 & 2 & \ldots & r & \ldots & n \\ y_1 & y_2 & \ldots & y_r & \ldots & y_n \end{pmatrix}\]
and \(g_j = \begin{pmatrix} 1 & 2 & \ldots & r & \ldots & n \\ x_1 & x_2 & \ldots & x_r & \ldots & x_n \end{pmatrix}\), then \(g_i\) takes \([x_1, x_2, \ldots, x_r] \in \Delta\) to \([1, 2, \ldots, r]\) and \([1, 2, \ldots, r]\) to \([y_1, y_2, \ldots, y_r] \in \Delta\). Similarly, \(g_j\) takes \([y_1, y_2, \ldots, y_r] \in \Delta\) to \([1, 2, \ldots, r]\) and \([1, 2, \ldots, r]\) to \([x_1, x_2, \ldots, x_r] \in \Delta\). Hence, \(\Delta\) is self-paired. Now, if \([x_1, x_2, \ldots, x_r] = [y_1, y_2, \ldots, y_r]\), then, clearly \(\sigma_i = \sigma_j = \sigma\) and it is, trivially, self-inverse. \(\square \)

Lemma 6.3. Let the cycle type of \(g \in G\) be \((\alpha_1, \alpha_2, \ldots, \alpha_n)\). If \(\alpha_1 \geq r\), then the number of elements in \(X^\alpha\) fixed by \(g\) is given by \(|\text{Fix}(g)| = r! \binom{\alpha_1}{r}\).

Proof. Let \([x_1, x_2, \ldots, x_r] \in X^\alpha\) and \(g \in G\). Then \(g\) fixes \([x_1, x_2, \ldots, x_r]\) if and only if each of the elements \(x_1, x_2, \ldots, x_r\) comes from a 1–cycle in \(g\). Now, out of the set of \(\alpha_1\) elements of \(X\) that are fixed by \(g\), the total number of ordered \(r\)–element subsets that can be formed is \(\alpha_1 P_r = r! \binom{\alpha_1}{r}\). Each of these elements of \(X^\alpha\) will be fixed by \(g\) so that \(|\text{Fix}(g)| = r! \binom{\alpha_1}{r}\). \(\square \)

Theorem 6.4. Let \(G\) act on \(X^\alpha\) and let \((\alpha_1, \alpha_2, \ldots, \alpha_n)\) be the cycle type of an element \(g \in G\). Then the number of self-paired suborbits of \(G\) is given by
\[2r! \sum_{g \in G} \binom{\alpha_1 + 2\alpha_2}{r}.\]

Proof. The number of 1–cycles in \(g^2\) is \((\alpha_1 + 2\alpha_2)\), (see [3]). By Lemma 6.3, the number of elements in \(X^\alpha\) fixed by \(g^2\) is \(|\text{Fix}(g^2)| = r! \binom{\alpha_1 + 2\alpha_2}{r}\). By Theorem 2.3, the number of self-paired suborbits of \(G\) on \(X^\alpha\) is given by
\[\frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g^2)| = \frac{1}{2r!} \sum_{g \in G} r! \binom{\alpha_1 + 2\alpha_2}{r} = \frac{2r!}{n!} \sum_{g \in G} \binom{\alpha_1 + 2\alpha_2}{r}.\]
ON THE SUBORBITS OF THE ALTERNATING GROUP A_n...

References

