A NOTE ON π-REGULAR AND πS-UNITALITY
OVER NOETHERIAN REGULAR δ-NEAR RINGS
(π-R&πS-U-NR-δ-NR)

N.V. Nagendram1, Smt.Ch. Padma2, T.V. Pradeep Kumar3, Y. Venkateswara Reddy4

1,2Lakireddy Balireddy College of Engineering
Mylavaram, Krishna District, AP, INDIA
3,4Acharya Nagarjuna University College of Engineering
Acharya Nagarjuna University
Nambur, Guntur District, AP, INDIA

Abstract: In this paper, we begin with to show that the characterization of π-regularity and πS-Unitality over Noetherian regular δ-near rings, also consider their application in near rings as well.
Next we introduce more general concepts of π-Regularity and πS-Unitality characterization over Noetherian Regular δ-near rings and then given some examples in near-rings also investigated their properties and characterization.

AMS Subject Classification: 16Y30
Key Words: near rings, δ-near ring, regular near rings, regular δ-near rings, Noetherian regular δ-near rings, regularity, π-regularity and πS-unitality

1. Introduction

The concept of Von-Nuemann regularity of Noetherian Regular δ-Near Rings of Near Rings studied by many authors Biedleman, Choudari, Goel, Heathorly, Hongan, Ligh, Maron and Murthy. Their main results are suggested in the book G Pilz [12].
The Von-Neumann regularity of rings and its generalization were studied by Fischer, Snider, Hirano Tominga, Savage, Ligh, Schein and Ohori. In 1985, Ohori investigated the characterization of π-Regularity and strong π-regularity and π-Unitality of Rings.
A Near Ring N is an algebraic system $(N,+,.)$ with two binary operations ‘+’ and ‘.’ Such that $(N,+)$ is a group where N is not necessarily abelian with neutral element say 0, $(N,.)$ is a semi group and $(a + b) c = ac + bc$ for all $a, b, c \in N$.

If N has a unity 1, then N is called Unitary.

A Near Ring N is with the extra $N0 = 0 = 0N$ and $\forall a \in N$, $a0 = 0 = 0a$ is said to be zero symmetric.

An element $d \in N$ is distributive if $d (a + b) = da + db$, $\forall a, b \in N$.

We will use the notations as follows:

Given a Near Ring N, $N_0 = \{a \in N / a0 = 0\}$ which is called the zero symmetric part of N and $N_c = \{a \in N / a0 = a\}$ which is called the constant part of N. The set of all distributive elements in N is denoted by N_d.

Obviously, we see that N_0 and N_c are sub Noetherian δ-delta near rings of N, but N_d is a semi group under multiplication of N.

Clearly, Noetherian Regular δ-near ring N is zero symmetric Near Ring in case $N = N_0$, in case of $N=N_c$, N is called a constant Near Ring and in case $N = N_d$ then N is called distributive Noetherian Regular δ-near ring. For all basic results we shall refer to G Pilz [12] some preliminaries along with examples provided herewith in section 2.

2. Preliminaries

Definition 2.1. A Near-Ring is a set N together with two binary operations “+” and “.” Such that

(i) $(N, +)$ is a Group not necessarily abelian, (ii) $(N,.)$ is a semi Group and (iii) for all $n_1, n_2, n_3 \in N$, $(n_1 + n_2) . n_3 = (n_1 . n_3 + n_2 . n_3)$ i.e. right distributive law.

Examples 2.2 Let $M_{2\times2} = \{(aij) / Z ; Z is treated as a near-ring\}$. $M_{2\times2}$ under the operation of matrix addition ‘+’ and matrix multiplication ‘.’.

Example 2.3. Z be the set of positive and negative integers with 0. $(Z, +)$ is a group. Define ‘.’ on Z by $a \cdot b = a$ for all $a, b \in Z$. Clearly $(Z, +,.)$ is a near-ring.

Example 2.4. Let $Z_{12} = \{0, 1, 2, \ldots , 11\}$. $(Z_{12}, +)$ is a group under ‘+’ modulo 12. Define ‘.’ on Z_{12} by $a \cdot b = a$ for all $a \in Z_{12}$. Clearly $(Z_{12}, +,.)$ is a near-ring.

Definition 2.5. A near-ring N is Regular Near-Ring if each element $a \in N$ then there exists an element x in N such that $a = axa$.

Definition 2.6. A Commutative ring N with identity is a Noetherian Regular δ-Near Ring if it is Semi Prime in which every non-unit is a zero divisor and the Zero ideal is Product of a finite
number of principle ideals generated by semi prime elements and N is left simple which has $N_0 = N$, $N_e = N$.

Definition 2.7. A near-ring N is called a δ-Near – Ring if it is left simple and N_0 is the smallest non-zero ideal of N and a δ-Near – Ring is a non-constant near ring.

Definition 2.8. A δ-Near-Ring N is isomorphic to δ-Near-Ring and is called a Regular δ-Near-Ring if every δ-Near-Ring N can be expressed as sub-direct product of near-rings $\{N_i\}$, N_i is a non-constant near-ring or a δ-Near-Ring N is sub-directly irreducible δ-Near-Rings N_i.

Definition 2.9. Let N be a Commutative Ring. Let N be a Noetherian Regular δ-Near-Ring if each $P \in \mathfrak{A}(N_N)$ is strongly prime i.e., P is a δ-Near – Ring of N.

Example 2.10. Let $N = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$ where F is a field. Then $P(N) = \begin{bmatrix} 0 & F \\ 0 & 0 \end{bmatrix}$

Let, $\sigma : N \rightarrow N$ be defined by, $\sigma((a \ b = a \ 0 \ 0 \ c)) = 0 \ c$

It can be seen that a σ endomorphism of N and N is a $\sigma(\ast)$-Ring or Noetherian Regular δ-Near – Ring.

Definition 3.11. Let $(N, +, \bullet)$ be a near-ring. A subset L of N is called a ideal of N provided that 1. $(N, +)$ is a normal subgroup of $(N, +)$, and 2. $m.(n + i) = m.n \in L$ for all $i \in L$ and $m, n \in N$.

3. General Concepts on π-Regularity Characterization Over Noetherian Regular δ-Near Rings of Near Rings

In this section we discussed some definitions, properties and general concepts on π-Regularity characterization over Noetherian Regular δ-Near Rings of Near Rings.

Definition 3.1. A Noetherian regular δ-Near– Ring N, an element $a \in N$ is called nilpotent if \exists a positive integer $n \ni a^n = 0$.

Definition 3.2. A subset $S \subset N$ is called Nilpotent if \exists a positive integer $n \ni S^n = 0$ and $S \subset N$ is called Nil if every element in S is Nilpotent which is introduced by G Pilz Near Rings, North Holans P.C., New York in 1983.

Note 3.3. Every Nilpotent subset of N is NIL.

Definition 3.4. A (two sided) N – subgroup of N is a subset K of N such that (i) $(K, +)$ is a subgroup of $(N, +)$, (ii) $NK \subset K$ and (iii) $KN \subset K$. If K satisfies the properties (i),(ii) then it is called a right N – subgroup of N.

Definition 3.5. A (two sided) N – subgroup of N is a subset M of N such that (i) $(M, +)$ is a subgroup of $(N, +)$, (ii) $NM \subset M$ and (iii) $MN \subset M$. If M
satisfies the properties (i),(ii) then it is called a left N – subgroup of N, normal left N- subgroup of N and right N- subgroup of N respectively.

Note 3.6. Hence Normal right N – subgroup of N are the same of right ideals of Noetherian regular δ-Near Ring N.

Definition 3.7. A subset L of a Noetherian regular δ-Near Ring N together with (i) NL ⊂ L and (ii) LN ⊂ L is called N – subset of N.

If this L satisfies (i) then it is called a left N – subset of Noetherian regular δ-Near Ring N (NR-δ-NR) and If this L satisfies (ii) then it is called a right N – subset of Noetherian regular δ-Near Ring N (NR-δ-NR).

Note 3.8. A Noetherian regular δ-Near Ring N is said to be ‘Reduced’ if N has no non-zero nilpotent elements i.e., ∀ a ∈ N, a^n = 0 for some positive integer n ⇒ a =0 Mc Coy already given proof for N is Reduced ⇔ ∀ a ∈ N, a^2 = 0 ⇒ a =0.

Definition 3.9. A Noetherian δ-Near Ring is ‘regular’ (Von – Nuemann) if ∀ a ∈ N, ∃ an element x ∈ N such that a = axa. Since, ya and ay are idempotent elements in N, taking ya = e, Na = Neya = Nae ⊂ Ne = Nya ⊂ Na. Hence, Na = Ne. obviously, N is left S-Unital.

Proposition 3.10. Let N be a Noetherian Regular δ-Near Ring of a Near Ring. Then N is regular ⇔ N has the condition “∀ a ∈ N, ∃ e^2 = e ∈ N such that N a = N e and N is left S-Unital”.

Proof. Given N be a Noetherian Regular δ-Near Ring of a Near Ring.

⇒ To show that N is regular if and only if N has the condition “∀ a ∈ N, ∃ e^2 = e ∈ N such that N a = N e and N is left S-Unital”. For that, ∀ a ∈ N, ∃ y ∈ N such that a = aya. Since, ya and ay are idempotent elements in N, taking ya = e, Na = Neya = Nae ⊂ Ne = Nya ⊂ Na. Hence, Na = Ne. obviously, N is left S-Unital.

⇐ Let us assume that N has the given condition “∀ a ∈ N, ∃ e^2 = e ∈ N such that N a = N e and N is left S-Unital”.

Then S-Unitality ⇒ that a ∈ Na = Ne. so that ∃ y ∈ N such that a = ye.

⇒ e = ee ∈ Ne = Na, so that ∃ y ∈ N such that e = ya.

Thus we obtain a = xe = xee = xeya = aya ⇒ N is regular.

Hence the Proposition.

A Note on π-Regular and πS-Unitality over Noetherian Regular δ-Near Rings(π-R&πS-U-NR-δ-NR)

Proposition 3.11. Every Noetherian regular δ-Near Ring N has no non-zero nil left N- subset.

Proof. Let N be a Noetherian regular δ-Near Ring and M be a nil left N- subset of N.

It is sufficient to show that M = {0 }.

Indeed, let a ∈ M since N is Noetherian regular δ-Near Ring(NR-δ-NR),

N has the condition that there exists e^2 = e ∈ N such that Na = Ne and N is left S-Unital.
A NOTE ON π-REGULAR AND πS-UNITALITY...

By known Proposition, since M is a left N – subset implies $a \in Na \in M$.
On the other hand, since M is Nil, there exists a positive integer n such that $a^n = 0$.
Given condition $e = ee \in Ne = Na \subset M$.
Also, \exists a positive integer m such that $e = e^m = 0$.
By the two conditions, we have $a \in N0$, so that $a = r.0 = (r.0)^n = a^n = 0$.
Therefore, $M = \{0\}$. Hence the Proposition.

Corollary 3.12. Every Noetherian regular δ-Near Ring N with identity has no non-zero nil left N-subgroup.

Definition 3.13. A Noetherian regular δ-Near Ring N is said to be π-Regular if $\forall a \in N$, \exists a positive integer n such that a^n is a regular element i.e., $a^n = a^m x a^n$ for some $x \in N$. such an element ‘a’ is called π-Regular.

Note 3.14. Every Regular near ring and Noetherian regular δ-Near Ring is π-Regular but not every π-Regular is a Noetherian regular δ-Near Ring, Regular Near Ring.

Example 3.15. Let $N = \{0, a, b, c\}$ be an additive klein 4 – group this is a Noetherian regular δ-Near Ring with the following multiplication table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>a</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Thus Noetherian regular δ-Near Ring N is zero symmetric Noetherian regular δ-Near Ring with identity say e. Moreover, N is a π-Regular but not regular.

Indeed, $0 = 0a0$, $a^2 = a^2 b a^2$, $b^4 = b^4 a b^4$ and $c^2 = c^2 c c^2$ but a is not a regular element.

Example 3.16. Let $N = Z_4 = \{0, 1, 2, 3\}$ be an additive group of integers mod. 4 and define multiplication as follows table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Thus Noetherian regular δ-Near Ring N is zero symmetric Noetherian regular δ-Near Ring with identity say e. Moreover, N is a π-Regular but not regular.

Indeed, $0 = 0a0$, $a^2 = a^2 b a^2$, $b^4 = b^4 a b^4$ and $c^2 = c^2 c c^2$ but a is not a regular element.
Proposition 3.17. Let N be a Near Ring. Then N is regular if and only if N has the condition $\forall a \in N, \exists e^2 = e \in N$ such that $Na = Na^n$ and N is left S-Unital.

Proof. Refer Proposition 1. [21].

Proposition 3.18. Every regular near ring N has no non-zero nil left N-Subset.

Proof. Refer Proposition 3. [21].

4. General Concepts on πS-Unitality Characterization over Noetherian Regular δ-Near Rings of Near Rings

In this section we discussed some definitions, properties and general concepts on πS-Unitality characterization over Noetherian Regular δ-Near Rings of Near Rings.

Definition 4.1. A Noetherian regular δ-Near Ring N is said to be left S-Unital (respectively, right S-Unital) if $\forall a \in N, a \in Na$ (respectively, $a \in an$) such element ‘a’ is called left S-Unital(respectively, right S-Unital).

Definition 4.2. A Noetherian regular δ-Near Ring N is called S-Unital, if N is both left S-Unital and right S-Unital.

Note 4.3. Every Noetherian Regular δ-Near Ring N with left identity or identity is clearly left S-Unital.

Note 4.4. Every Noetherian Regular Near Ring N is S-Unital we studied and begin with to show that the characterization of regularity and S-Unitality in Noetherian Regular δ-Near Rings N of Near Ring.

Definition 4.5. A Near ring N is called left πS-Unital (respectively right πS-Unital) if for each element $a \in N$, \exists a positive integer n such that a^n is a S – Unital element, i.e., $a^n \in N a^n$ (respectively $a^n \in a^n N$) such an element ‘a’ is called left πS-Unital (respectively right πS-Unital).

N is called πS-Unital, if N is both left πS-Unital and right πS-Unital. Also, every left πS-Unital
(respectively right πS-Unital) Noetherian Regular δ-Near Ring is left πS-Unital (respectively right πS-Unital), but not conversely we can give counter example for this as below :

In above example 3.15 clearly, N is a left πS-Unital Noetherian Regular δ-Near Ring. But in example 3.15, N is left πS-Unital, indeed $0 = 1.0 = 2.0 = 3.0 \in N0$, and $1 = 3.1 \in N1, 2^2 = 0 = 0.2^2 \in N 2^2$ and $3 = 3.3 \in N3$. But this Noetherian Regular δ-Near Ring N is not S- Unital, because 2 is not a left S-Unital element.

These are some Properties, concepts on π-Regularity and πS-Unitality characterization Over Noetherian Regular δ-Near Rings of Near Rings.
Theorem 4.6. Let N be a Near Ring. Then N is a π - Regular if and only if N has the condition $\forall a \in N, \exists e \in N$ such that $Na = Ne$ and N is left πS- unital.

Proof. Refer Theorem 7. [21].

5. Main Results on π-Regularity and πS-Unitality Characterization over Noetherian Regular δ-Near Rings of Near Ring

We derived some important results on π-Regularity and πS-Unitality characterization over Noetherian Regular δ-Near Rings of Near Ring.

Theorem 5.1. Let N be a Noetherian Regular δ-Near Ring. Then N is π-Regular if and only if N has the condition that $\forall a \in N, \exists e \in N$ such that $N a = Ne$ and N is left πS-Unital.

Proof. Suppose that N is π-Regular. Then for any $a \in N$, there exists a positive integer n and $x \in N$ such that $a^n \in N$. Hence N is left πS-Unital.

Next, since xa^n and $a^n x$ are idempotent elements in N, putting $xa^n = e$, $N a^n = Ne$, $xa^n \subset N$.

Hence $N a^n = Ne$.

Conversely, assume that N has the given condition $\forall a \in N, \exists e \in N$ such that $N a = Ne$ and N is left πS-Unital. Then the πS-Unitality $\Rightarrow a^n \in N a^n = Ne$, so that there exists $y \in N$ such that $a^n = ye$ (Equation 1).

On the otherhand, we see that $e = ee = Ne$, so that there exists $x \in N$ such that $e = xa^n$ (Equation 2). From these two conditions of Equ 1 and Equ 2, we obtain that $a^n = a^n x a^n$.

Therefore, N is a πS-regular Noetherian Regular δ-Near Ring.

Hence the theorem.

Example 5.2. $N = \{0, a\}$ is a non-zero N- subgroup which is Nil. Then for any Noetherian regular δ-Near Ring N, the center of N is denoted by the set $Z(N) = \{x \in N / ax = xa, \forall a \in N\}$.

When N is distributive, i.e, $N = N_d$, $Z(N)$ is a sub near ring of Noetherian Regular δ-Near Ring N. so that is a distributive π-Regular Near rings but which are not additive abelian.

A Note on π-Regular and πS-Unitality over Noetherian Regular δ-Near Rings(π-R&πS-U-NR-δ-NR)

N V Nagendram, Ch Padma, T V Pradeep Kumar and Dr. Y V Reddy

Theorem 5.3. The center of a distributive π-Regular Noetherian regular δ-Near Ring N is also π-regular.
Proof. Let \(N \) be a distributive \(\pi \)-Regular Noetherian regular \(\delta \)-Near Ring and let \(a \in Z(N) \).

Then \(\exists \ y \in N \) and \(\exists \ n \in Z^+ \ni x^n a x^n \in Z(N) \). then our claim is done. Indeed, let \(q \in N \). since, \(a \in Z(N) \). Thus we can deduce that \(q (a^n x) = (qa^n) x = a^n (qx) = a^n x a^n (qx) = a^n x (qx) a^n = a^n (xq) a^n \)

and \((a^n x) = (xa^n) q = x(a^n q) = x(qa^n) = xq(a^n) x = xa^n a^n = a^n (xq x) a^n \).

Hence, \(a^n x \in Z(N) \). similarly we can obtain that \(xa^n \in Z(N) \),

thus \(q(xa^n) = q(a^n x) = (qa^n) x = (a^n x) q = x(a^n q) x \) &

\((xa^n) = x(a^n x) q = xq(a^n x) = x(qa^n) x = x(a^n q) x \)

\(\Rightarrow q(xa^n) = (xa^n) q \) i.e., \(xa^n \in Z(N) \).

Hence \(Z(N) \) is a \(\pi \)-Regular.

Hence the theorem.

References

A NOTE ON π-REGULAR AND πS-UNITALITY...

