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1. Introduction

The Leggett-Williams triple fixed point theorem [11] and its generalization, the five
functionals fixed point theorem [2], have been the primary tools used to prove the
existence of at least three positive solutions to boundary value problems over the
past decade. There have been many different types of fixed point theorems involving
functionals and norms that have extended and further generalized these results in
recent years. See Kwong [10], Avery-Anderson-Henderson [4], and Sun-Zhang [16]
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to mention a few. Mavridis [12] published the first extension to the work of Leggett-
Williams [11] which replaced the arguments involving functionals with arguments
involving operators. Invariance arguments were key components in the paper by
Mavridis. Avery-Anderson-Henderson-Liu in [5] removed the invariance condition
in the spirit of the original work done by Leggett-Williams by working in a function
space to prove the existence of at least one fixed point for an operator.

The difficulty in replacing the arguments involving functionals in [2] and other
similar generalizations of the work of Leggett-Williams with arguments involving
operators lies in the ability to compare the output of an operator to a function
using the comparison generated by an underlying cone P . That is, for an operator
R and a specified function xR, one needs to be able to say, for any y ∈ P , that
either Ry < xR or xR ≤ Ry. In [12] this issue was dealt away with invariance
like conditions. However, in [5], by considering a cone P of a real Banach space
E which is a subset of F (K) (the set of real valued functions defined on a set K),
the spirit of the original work of Leggett-Williams [11] and the extensions to the
outer boundary by Avery-Anderson-Henderson [4] are maintained by avoiding any
invariance-like conditions in the arguments. This manuscript extends the existence
result of Avery-Anderson-Henderson-Liu in [5] to an existence of at least two and
at least three fixed points with a nontrivial application and example to a boundary
value problem.

2. Preliminaries

In this section we will state the definitions that are used in the remainder of the
paper.

Definition 1. Let E be a real Banach space. A nonempty closed convex set
P ⊂ E is called a cone if, for all x ∈ P and λ ≥ 0, λx ∈ P , and if x,−x ∈ P then
x = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y−x ∈
P , and we say that x < y whenever x ≤ y and x 6= y. Let K be a subset of real
numbers and F (K) the set of all real valued functions defined over K. If J ⊂ K
and x, y ∈ F (K) we will say that:

x <J y if and only if x(t) < y(t) for all t ∈ J,

and

x ≤J y if and only if x(t) ≤ y(t) for all t ∈ J.

Furthermore, we will say that

x ≦J y if and only if x ≤J y and there exists a t0 ∈ J such that x(t0) = y(t0).In
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Definition 2. An operator is called completely continuous if it is continuous
and maps bounded sets into precompact sets.

Definition 3. Let P be a cone in a real Banach space E. Then we say that
A : P → P is a continuous concave operator on P if A : P → P is continuous and

tA(x) + (1 − t)A(y) ≤ A(tx + (1 − t)y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say that B : P → P is a continuous
convex operator on P if B : P → P is continuous and

B(tx + (1 − t)y) ≤ tB(x) + (1 − t)B(y)

for all x, y ∈ P and t ∈ [0, 1].

Let R and S be operators on a cone P of a real Banach space E which is a subset
of F (K), the set of real valued functions defined on a set K. For JR, JS ⊂ K and
xR, xS ∈ E we define the sets,

PJR
(R,xR) = {y ∈ P : R(y) <JR

xR}

and
P (R,S, xR, xS , JR, JS) = PJS

(S, xS) − PJR
(R,xR).

Definition 4. Let R be an operator on a cone P of a real Banach space E
which is a subset of F (K), the set of real valued functions defined on a set K. For
JR ⊂ K and xR ∈ E, we say that R is comparable to xR on P relative to JR if,
given any y ∈ P , either

R(y) <JR
xR or xR ≤JR

R(y).

Definition 5. Let D be a subset of a real Banach space E. If r : E → D is
continuous with r(x) = x for all x ∈ D, then D is a retract of E, and the map r is
a retraction. The convex hull of a subset D of a real Banach space X is given by

conv(D) =

{

n
∑

i=1

λixi : xi ∈ D, λi ∈ [0, 1],

n
∑

i=1

λi = 1, and n ∈ N

}

.

The following theorem is due to Dugundji and its proof can be found in [13, p
22].

Theorem 6. Let E and X be Banach spaces and let f : C → K be a continuous
mapping, where C is closed in E and K is convex in X. Then there exists a
continuous mapping f̃ : E → K such that f̃(u) = f(u), u ∈ C.

Yet in establishing our main results, we will use the following form of Dugundji’s
theorem [6, p 44].In
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Corollary 7. For Banach spaces X and Y , let D ⊂ X be closed and let
F : D → Y be continuous. Then F has a continuous extension F̃ : X → Y such
that F̃ (X) ⊂ conv(F (D)).

Corollary 8. Every closed convex set in a Banach space is a retract of the
Banach space.

The following theorem, which establishes the existence and uniqueness of the
fixed point index, is from [7, pp 82-86]; an elementary proof can be found in [6, pp
58 & 238]. The proof of our main result in the next section will invoke the properties
of the fixed point index.

Theorem 9. Let X be a retract of a real Banach space E. Then, for every
bounded relatively open subset U of X and every completely continuous operator
A : U → X which has no fixed points on ∂U (relative to X), there exists an integer
i(A,U,X) satisfying the following conditions:

(G1) Normality: i(A,U,X) = 1 if Ax ≡ y0 ∈ U for any x ∈ U ;

(G2) Additivity: i(A,U,X) = i(A,U1,X) + i(A,U2,X) whenever U1 and U2 are
disjoint open subsets of U such that A has no fixed points on U − (U1 ∪ U2);

(G3) Homotopy Invariance: i(H(t, ·), U,X) is independent of t ∈ [0, 1] whenever
H : [0, 1] × U → X is completely continuous and H(t, x) 6= x for any (t, x) ∈
[0, 1] × ∂ U ;

(G4) Solution: If i(A,U,X) 6= 0, then A has at least one fixed point in U .

Moreover, i(A,U,X) is uniquely defined.

3. Main Results

The following two lemmas were the key components in the proof of the expansion-
compression fixed point theorem of operator type and their proofs can be found in
[5].

Lemma 10. Let F (K) be the set of real valued functions defined on K ⊂ R,
JA and JB be subsets of K with JB being compact, and P be a cone of non-negative
functions in a real Banach space E which is a subset of F (K). Suppose that A is a
concave operator on P , B is a continuous convex operator on P , and T : P → P is
a completely continuous operator. Suppose there exist xA, xB ∈ E such that

(B0) A is comparable to xA on P relative to JA;

(B1) {y ∈ P : xA <JA
A(y) and B(y) <JB

xB} 6= ∅;In
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(B2) if y ∈ P with B(y) ≦JB
xB and xA ≤JA

A(y), then B(Ty) <JB
xB;

(B3) if y ∈ P with B(y) ≦JB
xB and A(Ty) <JA

xA, then B(Ty) <JB
xB .

If PJB
(B,xB) is bounded, then i(T, PJB

(B,xB), P ) = 1.

Lemma 11. Let F (K) be the set of real valued functions defined on K ⊂ R,
JC and JD be subsets of K with JC being compact, and P be a cone of non-negative
functions in a real Banach space E which is a subset of F (K). Suppose that C is a
continuous concave operator on P , D is a convex operator on P , and T : P → P is
a completely continuous operator. Suppose there exist xC , xD ∈ E such that

(A0) D is comparable to xD on P relative to JD;

(A1) {y ∈ P : xC <JC
C(y) and D(y) <JD

xD} 6= ∅;

(A2) if y ∈ P with C(y) ≦JC
xC and D(y) ≤JD

xD, then xC <JC
C(Ty);

(A3) if y ∈ P with C(y) ≦JC
xC and xD <JD

D(Ty), then xC <JC
C(Ty).

If PJC
(C, xC) is bounded, then i(T, PJC

(C, xC ), P ) = 0.

To simplify the statements of the multiple fixed point theorems of operator
type, in the following definition we define what it means to be LW-inward and LW-
outward (LW for Leggett-Williams). Note that the operator is void of invariance-
like conditions on the underlying sets in the spirit of the original Leggett-Williams
arguments [11] for the outward conditions and in the spirit of the Avery-Anderson-
Henderson arguments [4] for the inward conditions.

Definition 12. Let F (K) be the set of real valued functions defined on K ⊂ R,
JA, JB , JC and JD be subsets of K, with JB and JC being compact, and P be a
cone of nonnegative functions in a real Banach space E which is a subset of F (K).
If A and C are concave operators on P , B and D are convex operators on P , with
B and C being continuous, xA, xB , xC , xD ∈ E, and T : P → P is a completely
continuous operator then we say that:

(i) T is LW-inward with respect to I(A,B, xA, xB , JA, JB) if the conditions (B0),
(B1), (B2), and (B3) of Lemma 10 are satisfied,

and

(ii) T is LW-outward with respect to O(C,D, xC , xD, JC , JD) if the conditions
(A0), (A1), (A2), and (A3) of Lemma 11 are satisfied.

The following theorem is the operator type expansion-compression fixed point
theorem of Avery-Anderson-Henderson-Liu [5].In
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Theorem 13. Let F (K) be the set of real valued functions defined on K ⊂ R,
JA, JB , JC and JD be subsets of K, with JB and JC being compact, and P be a
cone of nonnegative functions in a real Banach space E which is a subset of F (K).
Suppose that A and C are concave operators on P , B and D are convex operators
on P , with B and C being continuous, and T : P → P is a completely continuous
operator. Suppose there exist xA, xB , xC , xD ∈ E such that

(D1) T is LW-inward with respect to I(A,B, xA, xB , JA, JB);

(D2) T is LW-outward with respect to O(C,D, xC , xD, JC , JD).

If

(H1) PJB
(B,xB) ( PJC

(C, xC) and PJC
(C, xC) is bounded, then T has a fixed point

y ∈ P (B,C, xB , xC , JB , JC),

whereas, if

(H2) PJC
(C, xC ) ( PJB

(B,xB) and PJB
(B,xB) is bounded, then T has a fixed point

y ∈ P (C,B, xC , xB , JC , JB).

The following theorem is the double fixed point theorem of operator type.

Theorem 14. Let F (K) be the set of real valued functions defined on K ⊂ R,
JA, JB , JCl

, JDl
, JCo

, JDo
be subsets of K with JB , JCl

and JCo
being compact and

P be a cone of nonnegative functions in a real Banach space E which is a subset
of F (K). Suppose that A, Cl and Co are concave operators on P , B, Dl and Do

are convex operators on P with B, Cl and Co being continuous, and T : P → P is
a completely continuous operator. If there exist xA, xB , xCl

, xDl
, xCo

, xDo
∈ E such

that

(D1) T is LW-outward with respect to O(Cl,Dl, xCl
, xDl

, JCl
, xDl

);

(D2) T is LW-inward with respect to I(A,B, xA, xB , JA, JB);

(D3) T is LW-outward with respect to O(Co,Do, xCo
, xDo

, JCo
, xDo

);

and if PJCl
(Cl, xCl

) ⊂ PJB
(B,xB) and PJB

(B,xB) ⊂ PJCo
(Co, xCo

) with
PJCo

(Co, xCo
) being bounded, then T has at least two fixed points x∗ and x∗∗ with

x∗ ∈ P (Cl, B, xCl
, xB , JCl

, JB) and x∗∗ ∈ P (B,Co, xB , xCo
, JB , JCo

).

Proof. The operator T is LW-outward with respect to O(Cl,Dl, xCl
, xDl

, JCl
, xDl

)
and is LW-inward with respect to I(A,B, xA, xB , JA, JB) with PJCl

(Cl, xCl
) ⊂

PJB
(B,xB). Thus by (H2) of Theorem 13, T has a fixed point x∗ ∈ P (Cl, B, xCl

, xB ,
JCl

, JB). Similarly, the operator T is LW-inward with respect to I(A,B, xA, xB , JA,
JB) and LW-outward with respect to O(Co,Do, xCo

, xDo
, JCo

, xDo
) with PJB

(B,xB) ⊂
PJCo

(Co, xCo
). Thus by (H1) of Theorem 13, T has a fixed point x∗∗ ∈ P (B,Co, xB ,

xCo
, JB , JCo

).
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The following theorem is the triple fixed point theorem of operator type.

Theorem 15. Let F (K) be the set of real valued functions defined on K ⊂ R,
JAl

, JBl
, JAo

, JBo
, JC , JD be subsets of K with JBl

, JBo
and JC being compact and

P be a cone of nonnegative functions in a real Banach space E which is a subset
of F (K). Suppose that Al, Ao and C are concave operators on P , Bl, Bo, and D
are convex operators on P with Bl, Bo, and C being continuous, and T : P → P is
a completely continuous operator. If there exist xAl

, xBl
, xAo

, xBo
, xC , xD ∈ E such

that

(D1) T is LW-inward with respect to I(Al, Bl, xAl
, xBl

, JAl
, xBl

);

(D2) T is LW-outward with respect to O(C,D, xC , xD, JC , JD);

(D3) T is LW-inward with respect to I(Ao, Bo, xAo
, xBo

, JAo
, xBo

);

and if PJBl
(Bl, xBl

) ⊂ PJC
(C, xC) and PJC

(C, xC) ⊂ PJBo
(Bo, xBo

) with PJBo
(Bo,

xBo
) being bounded, then T has at least three fixed points x∗, x∗∗ and x∗∗∗ with

x∗ ∈ PJBl
(Bl, xBl

), x∗∗ ∈ P (Bl, C, xBl
, xC , JBl

, JC), and

x∗∗∗ ∈ P (C,Bo, xC , xBo
, JC , JBo

).

Proof. The operator T is LW-inward with respect to I(Al, Bl, xAl
, xBl

, JAl
, xBl

).
Thus by Lemma 10, i(T, PJBl

(Bl, xBl
), P ) = 1. Hence by the solution property

of the fixed point index, T has a fixed point x∗ ∈ PJBl
(Bl, xBl

). The operator
T is LW-outward with respect to O(C,D, xC , xD, JC , JD) and is LW-inward with
respect to I(Al, Bl, xAl

, xBl
, JAl

, xBl
) with PJBl

(Bl, xBl
) ⊂ PJC

(C, xC). Thus by
(H1) of Theorem 13, T has a fixed point x∗∗ ∈ P (Bl, C, xBl

, xC , JBl
, JC). Similarly,

the operator T is LW-inward with respect to I(Ao, Bo, xAo
, xBo

, JAo
, xBo

) and LW-
outward with respect to O(C,D, xC , xD, JC , JD) with PJC

(C, xC ) ⊂ PJBo
(Bo, xBo

).
Thus by (H2) of Theorem 13, T has a fixed point x∗∗∗ ∈ P (C,Bo, xC , xBo

, JC , JBo
).

4. Applications

Two-point right focal boundary value problems for differential equations have re-
ceived substantial interest by boundary value problem researchers for a long time,
see, [1, 3, 4, 5, 8, 9, 11, 14], and [15], to mention a few. In this section, we will apply
the double fixed point theorem of operator type to the second-order nonlinear right
focal boundary value problem,

x′′(t) + f(x(t)) = 0, t ∈ (0, 1), (1)In
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x(0) = 0 = x′(1), (2)

where f : R → [0,∞) is continuous.

It is well known that the Green’s function for −x′′ = 0 with the boundary
conditions (2) is given by

G(t, s) = min{t, s}, (t, s) ∈ [0, 1] × [0, 1].

For any fixed s ∈ [0, 1], G(t, s) is nondecreasing in t and satisfies G(t, s) ≥ tG(1, s)
for t ∈ [0, 1].

Let the Banach space in this section be E = C[0, 1] with the maximum norm.
Define the cone P ⊂ E by

P := {x ∈ E | x is nonnegative, nondecreasing, concave, and x(0) = 0} .

For any x ∈ P , from its concavity, we have x(t1) ≥
t1
t2

x(t2) for 0 ≤ t1 ≤ t2 ≤ 1 with
t2 6= 0.

It is also well known that a fixed point of the operator T : E → E defined by

Tx(t) :=

∫ 1

0
G(t, s)f(x(s))ds

is a solution of the boundary value problem (1), (2). Also, by properties of the
Green’s function, we have that T maps P to P . It is a standard exercise to show
T : P → P is a completely continuous operator by applying the Arzela-Ascoli
Theorem.

In the following theorem, we demonstrate how to apply the double fixed point
theorem (Theorem 14) to prove the existence of at least two positive solutions to
(1), (2).

Theorem 16. Suppose that 0 < τ1, η, τ2 < 1 and there are positive numbers
c1, d1, b, c2, d2 with c1

τ1
< d1 ≤ b ≤ c2η, c2 < d2τ2, and f : R → [0,∞) is continuous

such that

(a) f(x) > 6x
τ1(3−τ2

1
)

for 0 ≤ x ≤ c1, and f(x) > 6c1
τ1(3−τ2

1
)

for c1 ≤ x < d1,

(b) f(x) < 2b
η2 −

2
η

∫ 1
η

f( b
η
s)ds for 0 ≤ x ≤ b, and f(x) is nondecreasing for x ∈ [b, b

η
],

(c) f(x) > 2c2
τ2(1−τ2

2
)

for c2 ≤ x < d2.

Then the focal problem (1), (2) has at least two positive solutions x∗ and x∗∗ such
that x∗(η) < b and x∗(t) > c1

τ1
t for t ∈ [τ1, t0] and some t0 ∈ [τ1, 1], x∗∗(t) < c2

τ2
t for

t ∈ [τ2, 1] and x∗∗(η) > b.In
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Proof. Let A = B = Cl = Dl = Co = Do = I be the identity operator on P .
All are linear continuous operators mapping P onto P and hence concave or convex
operators as well. Let JA = JDl

= JDo
= {1}, JB = {η}, JCl

= [τ1, 1], JCo
= [τ2, 1],

which are all compact intervals. Let xA(t) = xB(t) = b, xCl
= c1

τ1
t, xDl

= d1t,
xCo

= c2
τ2

t, xDo
= d2t, for t ∈ [0, 1], which are all in the Banach space E.

Claim 1. T is LW-outward with respect to O(Cl,Dl, xCl
, xDl

, JCl
, JDl

).

Dl is comparable to xDl
on P relative to JDl

since JDl
is a degenerate interval.

Also, let x0(t) := αt on [0, 1] with α ∈ ( c1
τ1

, d1). Then, x0(t) > c1
τ1

t for t ∈ [τ1, 1] and
y(1) < d1. So, x0 ∈ {y ∈ P : xCl

<JCl
Cl(y) and Dl(y) <JDl

xDl
} which implies

that the set is nonempty.

Subclaim 1.1. If y ∈ P with Cl(y) ≦JCl
xCl

and Dl(y) ≤JDl
xDl

, then xCl
<JCl

Cl(Ty).

Suppose y ∈ P with Cl(y) ≦JCl
xCl

and Dl(y) ≤JDl
xDl

. From Cl(y) ≦JCl
xCl

,
we have that y(t) ≤ c1

τ1
t for t ∈ [τ1, 1], and there is some t0 ∈ [τ1, 1] such that

y(t0) = c1
τ1

t0. Hence y(τ1) ≥ τ1
t0

y(t0) = c1. From y(t) ≤ c1
τ1

t for t ∈ [τ1, 1], we have
y(τ1) ≤ c1. Therefore, y(τ1) = c1.

For t ∈ [0, τ1], we have that c1 = y(τ1) ≥ y(t) ≥ t
τ1

y(τ1) ≥ c1
τ1

t ≥ 0. For
t ∈ [τ1, 1], we have c1 = y(τ1) ≤ y(t) ≤ c1

τ1
t < d1t ≤ d1. Hence for t ∈ [τ1, 1], from

condition (a) it follows that

(ClTy)(t) = (Ty)(t) =

∫ 1

0
G(t, s)f(y(s))ds

=

∫ τ1

0
sf(y(s))ds +

∫ t

τ1

sf(y(s))ds +

∫ 1

t

tf(y(s))ds

>
6

τ1(3 − τ2
1 )

[
∫ τ1

0
sy(s)ds +

∫ t

τ1

sc1ds +

∫ 1

t

tc1ds

]

≥
6c1

τ1(3 − τ2
1 )

[
∫ τ1

0

s2

τ1
ds +

∫ t

τ1

sds +

∫ 1

t

tds

]

=
c1

τ1(3 − τ2
1 )

(−3t2 + 6t − τ2
1 ) ≥

c1

τ1
t,

where the last inequality is true for t = τ1 and 1, and so is for t ∈ [τ1, 1]. Hence,
xCl

<JCl
Cl(Ty).

Subclaim 1.2. If y ∈ P with Cl(y) ≦JCl
xCl

and xDl
<JDl

Dl(Ty), then
xCl

<JCl
Cl(Ty).

Suppose y ∈ P with Cl(y) ≦JCl
xCl

and xDl
<JDl

Dl(Ty). From xDl
<JDl

Dl(Ty), we have that (Ty)(1) > d1. By the concavity of Ty, we get (Ty)(t) ≥
t(Ty)(1) > td1 > c1

τ1
t for t ∈ [τ1, 1], i.e., xCl

<JCl
Cl(Ty).In
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It is easy to see that PJCl
(Cl, xCl

) is bounded. Therefore, we have verified that
T is LW-outward with respect to O(Cl,Dl, xCl

, xDl
, JCl

, JDl
).

Claim 2. T is LW-inward with respect to I(A,B, xA, xB , JA, JB).

The operator A is comparable to xA on P relative to JA since JA is degenerate.
Let y0(t) := βt with b < β < b

η
defined on [0, 1]. Obviously y0 ∈ {y ∈ P : xA <JA

A(y) and B(y) <JB
xB} which means the set is nonempty. Also, if y ∈ P with

B(y) ≦JB
xB and A(Ty) <JA

xA, then (Ty)(1) < b. By the nondecreasing property
of Ty, we have that (Ty)(η) ≤ (Ty)(1) < b, i.e., B(Ty) <JB

xB .

Subclaim 2.1. If y ∈ P with B(y) ≦JB
xB and xA ≤JA

A(y), then B(Ty) <JB

xB .

Suppose y ∈ P with B(y) ≦JB
xB and xA ≤JA

A(y). Then we have y(η) = b
and b ≤ y(1). By the concavity of y, we have that for t ∈ [0, η], 0 ≤ b

η
t = t

η
y(η) ≤

y(t) ≤ b, and for t ∈ [η, 1], b = y(η) ≤ y(t) ≤ t
η
y(η) = b

η
t ≤ b

η
. By condition (b), we

have that

(BTy)(η) = (Ty)(η) =

∫ 1

0
G(η, s)f(y(s))ds

=

∫ η

0
sf(y(s))ds +

∫ 1

η

ηf(y(s))ds

<

(

2b

η2
−

2

η

∫ 1

η

f

(

b

η
s

)

ds

)
∫ η

0
sds +

∫ 1

η

ηf

(

b

η
s

)

ds

= b.

Obviously, PJB
(B,xB) is bounded. Therefore, we have verified that T is LW-

inward with respect to I(A,B, xA, xB , JA, JB).

Claim 3. T is LW-outward with respect to O(Co,Do, xCo
, xDo

, JCo
, JDo

).

Do is comparable to xDo
on P relative to JDo

since JDo
is degenerate. Also,

let z0(t) := γt on [0, 1] with γ ∈ ( c2
τ2

, d2). Then, z0 ∈ {y ∈ P : xCo
<JCo

Co(y) and Do(y) <JDo
xDo

}, which is nonempty. Similarly as in Subclaim
1.2, we have that, if y ∈ P with Co(y) ≦JCo

xCo
and xDo

<JDo
Do(Ty), then

xCo
<JCo

Co(Ty).

Subclaim 3.1. If y ∈ P with Co(y) ≦JCo
xCo

and Do(y) ≤JDo
xDo

, then
xCo

<JCo
Co(Ty).

Suppose y ∈ P with Co(y) ≦JCo
xCo

and Do(y) ≤JDo
xDo

. Similarly as in
Subclaim 1.1, we have that for t ∈ [0, τ2], 0 ≤ y(t) ≤ c2, and for t ∈ [τ2, 1], c2 ≤
y(t) < d2. Hence for t ∈ [τ2, 1], by condition (c), we have

(CoTy)(t) = (Ty)(t) =

∫ 1

0
G(t, s)f(y(s))ds
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=

∫ τ2

0
sf(y(s))ds +

∫ t

τ2

sf(y(s))ds +

∫ 1

t

tf(y(s))ds

≥

∫ t

τ2

sf(y(s))ds +

∫ 1

t

tf(y(s))ds

>
2c2

τ2(1 − τ2
2 )

[
∫ t

τ2

sds +

∫ 1

t

tds

]

=
c2

τ2(1 − τ2
2 )

(−t2 + 2t − τ2
2 ) ≥

c2

τ2
t,

where the last inequality is true for t = τ2 and t = 1, and so is true for t ∈ [τ2, 1].
It is easy to see that PJCo

(Co, xCo
) is bounded. Therefore we have verified that

T is LW-outward with respect to O(Co,Do, xCo
, xDo

, JCo
, JDo

).

Claim 4. PJCl
(Cl, xCl

) ( PJB
(B,xB) and PJB

(B,xB) ( PJCo
(Co, xCo

).

Suppose y ∈ PJCl
(Cl, xCl

). Then, y ∈ P and y(t) ≤ c1
τ1

t for t ∈ [τ1, 1]. If τ1 ≤ η,
then y(η) ≤ c1

τ1
η < d1η < b, since d1 ≤ b. If η < τ1, then y(η) ≤ y(τ1) ≤ c1 < d1τ1 <

b. Hence B(y) <JB
xB , i.e., y ∈ PJB

(B,xB) and so PJCl
(Cl, xCl

) ⊂ PJB
(B,xB).

Define h0(t) := d1t on [0, 1]. Then, h0(t) = d1t > c1
τ1

t for t ∈ [τ1, 1], and h0(η) =

d1η < b. So, h0 ∈ PJB
(B,xB) − PJCl

(Cl, xCl
), i.e., PJCl

(Cl, xCl
) ( PJB

(B,xB).

Suppose y ∈ PJB
(B,xB). Then, y ∈ P and y(η) ≤ b. If η ≤ τ2, then y(t) ≤

t
η
y(η) ≤ b

η
t ≤ c2t < c2

τ2
t for t ∈ [τ2, 1]. If τ2 < η, then y(t) ≤ y(η) ≤ b ≤ c2η < c2 ≤

c2
τ2

t for t ∈ [τ2, η] and y(t) ≤ t
η
y(η) ≤ b

η
t ≤ c2t < c2

τ2
t for t ∈ [η, 1]. Hence, y(t) < c2

τ2
t

for t ∈ [τ2, 1], i.e., Co(y) <JCo
xCo

, which means PJB
(B,xB) ⊂ PJCo

(Co, xCo
). Let

g0(t) := δt for t ∈ [0, 1] with δ ∈ (c2,
c2
τ2

). Then, g0(η) > c2η ≥ b and g0(t) <
c2
τ2

t for t ∈ [τ2, 1]. Hence, g0 ∈ PJCo
(Co, xCo

) − PJB
(B,xB), i.e., PJB

(B,xB) (

PJCo
(Co, xCo

).
By Theorem 14, we conclude that the operator T has at least two fixed points

x∗ and x∗∗ with

x∗ ∈ P (Cl, B, xCl
, xB , JCl

, JB) and x∗∗ ∈ P (B,Co, xB , xCo
, JB , JCo

).

For x∗ ∈ P (Cl, B, xCl
, xB , JCl

, JB), we have that x∗ ∈ PJB
(B,xB) − PCl

(Cl, xCl
).

From x∗ ∈ PJB
(B,xB), we have that x∗(η) < b. From x∗ /∈ PCl

(Cl, xCl
), it follows

that there is some t0 ∈ [τ1, 1] such that x∗(t0) > c1
τ1

t0, which by the concavity of x∗

implies x∗(t) ≥ t
t0

x∗(t0) > c1
τ1

t for t ∈ [τ1, t0]. From x∗∗ ∈ P (B,Co, xB , xCo
, JB , JCo

),

we get that x∗∗ ∈ PJCo
(Co, xCo

) − PJB
(B,xB), i.e., x∗∗(t) < c2

τ2
t for t ∈ [τ2, 1] and

x∗∗(η) > b.

Example. Consider the right focal boundary value problem,

x′′(t) + |ex − xe| = 0, t ∈ (0, 1),In
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x(0) = x′(1) = 0.

We notice the function f(x) = |ex − xe| has a unique local maximal value e − 1
at x = 1 and a unique local minimal value 0 at x = e on [0,∞). Choose τ1 = 0.2,
η = 0.8, τ2 = 0.5, c1 = 0.1, d1 = 1, b = e, c2 = 4.4, d2 = 9. Then it is easy to
verify that all conditions in Theorem 16 are satisfied and hence the problem has at
least two positive solutions x∗ and x∗∗ on [0, 1] with x∗(0.8) < e, x∗(t) > 0.5t, for
t ∈ [0.2, t0] and some t0 ∈ [0.2, 1], and x∗∗(t) < 8.8t for t ∈ [0.5, 1], x∗∗(0.8) > e.
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